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AFIT/GE/ENG/92D-37

Abstract

The Air Force has equipped its aircraft with avionic systems such as Global Posi-
tioning Systems {GPS) and Inertial Gudance Systems (INS) capable of providing accurate
navigation solutions. The aircrews fiying these aircraft require a system that can either
survive the hostile environments encountered in combat or notify the aircrew that their
performance has been significantly degraded. This research focuses on failure detection and
isolation techniques using wu extended Kalman filter and generalized likelihood ratios using
matched filters. Analysic is conducted using a Kalman filter development package known
as the Multimode Simulatior. for Optimal Filter Evaluation (MSOFE). Both a large order
truth model for the navigation system (in which a full 24 satellite constellations is modeled)
and a reduced—order Kalman filter are developed. Results suggest that failures within the

ITEC nen W Aobnperd Lo . H - ’
GI'S can be detected, isolaved, and in sume cases compensated througl: feedback.
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DETECTION OF SPOOFING, JAMMING, OR FAILURE
OF A GLOBAL POSITIONING SYSTEM (GPS)

1. Introduction

A variety of Global Positioning System (GPS) receivers and Inertial Navigation Sys-
tems (INS) are installed on military aircraft. The GPS receives informatior from orbiting
satellites and calculates estimates of the position and velocity of the aircraft. The INS
detects inertial motion of the aircraft and calculates its own estimates of aircraft pusition
and velocity. The GPS and INS are integrated to form a system that is more accurate and
reliable than each of these systems by itself. Additional measurements from ground bhased
trauspoiders aie available and aid in determing aircraft position. The transponder based
systen is referred to as the Range/Range-Rate System (RRS). The combination of the
GPS, INS, and RRS form the Navigation Reference System (NRS) whose primary function
is to assist the pilot in navigating the aircraft. An important note is that the RRS is often
used on test ranges to reconstruct flight paths over the range. It is not desired to limit the
applications of this thesis to test aircraft, so it is assumed that the RRS represents any

one of many ground-based transponder systems used on current military aircraft.

1.1 Background

Research is being done by the Central Inertial Guidance Test Facility (CIGTF),
6585th Test Group, Air Force Systems Command (AFSC), Holloman AFB, NM to deter-
mine the vulnerability of the GPS to jamming and spoofing. Jamming is nothing more
than bombarding the GPS receiver with electronic noise. Iligure 1.1 illustrates jamming
as a broad band of noise directed at the GPS receiver. There is no intent to mislead the
GPS receiver with jamming, but rather to prevent it from recciving the desired satellite
information. Spoofing is more complex and harder to detect. The goal of spoofing is to
mimic the signal sent from the satellite to the GPS receiver but with minor changes to the

signal. These minor changes will cause the GPS to calculate erroneous estimates and draw

1-1
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the aircraft away from its desired destination. Spoofing is shown in Figure 1.1 as a directed
signal from a ground-based platform aimed at a particular target. An airborne platform
for the spoofer would be more effective against aircral with directional GP'S antennas
capable of pointing away from a ground-based spoofer. Jamming and spoofing constitute
two of the three failures that will be addressed in this thesis. A third failure that can affect
the performance of the GPS is the los: of a pseudorange input to the receiver. Failures
caused by losing a GPS pseudorange may look similar to spoofing or jamming, but it is

important to identify which of the three failures has occurred.

Satellite

et a)-Ni
AJF O .

- Re

Figure 1.1. Jamming and Spoofing

1.2 Problem Definition

The primary goal of this thesis will be to develop a failure detection and isolation
(FDI) system that will identify GPS failures as described above. This I'DI system will
be based on techniques discussed in the literature review. The follow-on goal will be to
develop an adaptive system: which can correct for a failure that has heen detected and
isolated. The NRS is to retain good performance as a result of corrections which are

typically used in a feedback configuration.
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1.3 Scope

Two types of failures will be considered. Figure 1.2 depicts the two types of fail-
ures as a jump or a ramp. A jump failure results in a corrupted signal with a different
magnitude than the desired signal and occurs almost instantaneously in time. Some FDI
algorithms assume the magnitude of this jump is known but it is more realistic to assume
the magnitude is unknown and important for the FDI system to determine. A ramp fail-
ure increases more gradually than a jump. The deceiving signal is constantly increasing
away from the desired signal at an unknown rate. The thresholds and delay shown will be
discussed in the literature review, The rate of increase of the ramp and magnitude of the

jump will be varied for different studies.

Although the failure algorithms discussed in this thesis could apply to sy stems other
than the GPS, no attempt will be made to induce failures into the INS or RRS, as the
primary focus will be on the GPS only. Ciiteria for compietion of the research are presented

in Section 1.6.

Jump Failure "hreshold
Desired Signal
TiM8 —mem
Deceiving Signal - -
Ramp |-= Delay:4 ,—--"""-_

Desired Signal

Figure 1.2. Types of Failures




1.4 Assumptions and System Descriplion

The list that follows helps describe the scenario chosen for this thesis and the simpli-
fying assumptions that were adopted. The impact caused by these assumptions may not
be apparent without knowing the context in which they were applied, so references are

listed to help the reader see their significance.

1. The NRS will be mounted on a computer-simulated aivcrafi that is capable of high
dynamic maneuvers analogous to a military fighter jet. Actual flight tests will not
be performed, but a two-hour flight profile as shown in Figure C.1 will be simulated
on a computer. This profile is represented by the latitude, longitude, and altitude of

the aircraft.

2. A typical NRS configuration will be used as shown by a block diagram representa-
tion in Figure 1.3. Error states are used as the basis of the filter design model, and

difference measurements are provided to a Kalman filter by the GPS. INS, and RRS.

The Kalman filter generates error state estimates used to correct the original INS
states, resulting in refined estimates of latitude, longitude, and altitude. There are
fourteen measurements available to the filter, including four satellite pscudoranges,
six transpender ranges, velo-ity in 3 axes via Doppler aiding and altitude from the
barometric altimeter. Chapter III provides a detailed description of these mcasure-
ment sources. Residuals are sent from the Kalman filter to the ¥DI system and
corrections can be fed back to the filter. The INS is inherentiy unstable in the alti-
tude channel and receives stability aiding from a barometric altimeter (1:p. 83). A
sampling period of two seconds (sec) was chosen for all the measurements. Previous
AFIT research (23, 26, 27) used update periods ranging from two to ten seconds.
The slower sampling periods were typically chosen to speed un the simulations which
took several days to run. This thesis used truth and filter medels with fewer states
resulting in shorter simulations so a higher sammpling period was fcasible. However,
data files were used to store several values at each sample time and these files became

unmanageable with sample periods below two seconds. A few simulations were also
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conducted with a one second sampling period to ensurc that no significant losses

occurred in the filter and FDI performance.

Error Siates
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Figure 1.3. NRS Block Diagram

3. The NRS will be modeled using differential equations that describe the physical

r~lationships between the real world and the NRS electronics. The model will be

based on error states rather than actual states because error states will provide 1nore

accuratle estimates of position and velocity (2). Research at CIGTF is based on a

Litton LN-93 model for the INS (9), a generic GP3 model (23), and a simplified

RRS model (23). The models used for this thesis are fvlly described in Chapter 1.

4. Failures will be assumed additive rather than multiplicative, allowing them to be

represented as an additional term ir the equations describing the measurements from

the GPS rather than changes in the dynamics model. This assumption simplifies the

problem siguificantly without a loss of realism. Finally, it will be assumed tha’
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only one failure can occur at a time and that multiple failures are unmodeled. Sce

Sections 1.6.1 and 3.4.

. Computer simulations will be run using a program called Multimode Simulation for

Optimal Filter Evaluation (MSOFE) (22). MSOFE is specifically used to provide
analysis of designs involving Kalman filters. A complete analysis, short of actual test
flights, is possible using Monte Carlo run simulations with MSOFE. The flight profile
will be generated using a computer program called PROFGEN (21). PRCFGEN
takes user input commands that describe aircraft mancuvers and produces computer—

compatible data which is fed to MSOFE for the simulations.

. The state dynamics matrix F is considered piecewise constant between sample storage

times of two seconds. The discretization process in Matrix, (8) takes this matrix and
uses an 8th order Padé approximation for the matrix exponential EXP(FAt). Seec
Sections 2.2.2 and 4.1.

. The measurements arc assumed sufficiently uncorrelated so the off-diagenal terms

of the measurement noise matrix, R, are negligible and can be set to zero. The
residual covariance matrix A is assumed nearly diagenal (or at least dominated by

its diagonal terms) based on the relationship:
AG)=H(L)PE)H (L) + R (1.1)

where R is assumed stationary because it has very smalil variations throughout the
simulation. Although a diagonal R does not ensure a diagonal A, Fquation (1.1)
indicates that observation of the diagonal terms of A will provide insights inio the

condition of the measurements.

. The simulation and post—processing software (MSOFE and Matrix,) are coded to

run in double precision in order to handle large disparities in various Kalman filter

values.

. MSOFE simulations for filter tuning are performed using 10-run Monte Carlo anal-

yses with statistical values averaged over the 10 runs. Single-run Monte Carle sim-
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10.

11.

12.

13.

ulations are used wheu testing the failure detection algorithm and will be compared

with multi-run results to cnsure the single run is not unusual.

Failure thresholds will be determined empirically based on simulation results in var-

ious situations. See Section 2.3.3.

Taylor series truncated to first order will be used for linearizing nonlinear equations.
Perturbations about some nominal point will be established in each case. See Scctions

2.2.1,3.3.2.2 and 3.3.3.2.

The FDI algorithm will only view the data within a set window of time in order to
avoid a growing set of hypotheses, as discussed later in Section 1.5.3. The size of the
window will be determined empirically based on shmulation results and the window
wiil slide in time to cover all the data in the simulation. For example, a ten—sample
window would have new data added to the end of the window and simultancously
have old data deleted from the beginning of the window. Additionally, the failure
is assumed to occur at the beginning of ihe window to simplify calculations. The
consequence of this simplificaticn is a delay in detecting the failure caused by waiting

for the failure to reach the beginning of the window, as discussed in Section 2.3.1.

A Doppler system is available to provide velocity aiding to the INS. The measure-
ments from the Doppler are ideal and tell the filter the exact error between the
filter state and the truth state. This ideal situation was assumed to allow girect
comparison of results against those obtained in previous AFIT theses. Sec Section

3.3.1.3.

Literature Review

This section contains a review of literature pertaining to four FDI techniques with

specific interest on their application to the integrated NRS described in Section 1.4. More

details on this NRS can be found in a variety of sources, including Air Force Institute

of Technology (AFIT) theses (23, 27). References made to the Kalman filter and ¥DI

systera will directly apply to the components shown in Figure 1.3. Kalman filter theory
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is presented by Maybeck (13). The literature review conclusion will discuss the validity of

cach technique for use in the thesis research.

1.5.1 Simple Error Detcetion. A simple method for error detection is to monitor
the errors in the position and velocity calculations. A failure has occurred if these errors
cxceed an cstablished failure threshold, as shown in Figure 1.2, The problem with this
method is that the desired values of irue position and velocity are not knowmn, so it is
not, possible to determine the inaccuracy of the calculations. An alternative is to use the
Kalman filter to provide a statistic known as code loop pseudorange tracking error which
is related to the desired position through differential equations (24:pp. 1460-1461). The
tracking error is sent to the FDI system for comparison against a failure level. The failure
level will be determined based on past experience, flight tests, and most commonly through
computer-generated Monte Carlo simulations or covariance analyses (11:pp. 102-106). If
the code loop errer for a given satellite is larger than the failure level, the GPS is considered
1o have failed or lost lock in the channcl associated with that satellite and the GPS will

no longer use information from this channel until the satellite has regained lock.

1.5.2 Direct and Analytic Redundancy. One of the simmplest and most reliable fail-
ure detection techniques is the use of redundant elemeats for voting. Given a system with
triple redundancy, an algorithm can be easily written that will compare the outputs of
each element, allowing them to vote on the condition of the other elements. Simply stated,
if itwo of ithe elements agree on the aircraft’s position but the third element provides a
totally different value, the latter is considered inadequate to provide accurate information
and is removed from the system. Once the third element is removed from the system, the
algorithm is unable to isolate a failure. If the two remaining elements disagree, a failure
has been detected but not isoiated and both elements will have to be removed from the

system or the system performance will be degraded. The major disadvantage of direct

redundancy is the need for redundant hardware (5:pp. 1-2).

A more sophisticated approach uses analytic redundancy. By using the physical and
dynamic relationships between instruments ou an aircraft, it is possible to generate mul-

tiple sources of the same information mathematically. These sources are used by the I'DI
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structure ¢hrough voting techniques. Analytic redundancy avoids the need for excessive
hardware, because cach instrument is required for specific mission requirements. The sur-
plus of information is also used to provide isolation of the failure without the need for

triple redundancy (5:pp. 5-7).

1.5.3 Multiple Generalized Likcithood Ratio Tcsting. In some situations direct re-
dundancy is not practical. An alternative is to use a Kalman filter as shown in Figure 1.3
to compensate for failures in tie NRS and provide accurate cstimates of the position and
velocity. Figure 1.4 shows how the sensor (GPS, INS, or RRS), the Kalman filter, and the
FDI block of Figure 1.3 interact. Three hypotheses are considered with Ho, H,, and Ho,
representing no failure, jump failure and ramp failure respectively. The Kalman filter is
designed based on Hy, and two matching filters are designed based on H; and H, (29).
When considering H; and H,, design parameters within the matching filters determine
what type of failure is being matched, but the magnitude of the jump and rate of the
slope do not have to be predetermined and are cstimated by the GLR algorithm, The
matching fillers monitor the residuals provided by the Kalman filter, and each matching
filter computes a generalized likelihood ratio (GLR). The GLR’s are indications of which
hypothesis is most correct. The GLR’s use maximum likelihood estimates (MLE) and are
compared through test logic to detect and isolate failures. A correciive signal can be fed
back to the Kalman filter {for adaptation to the failure. In many cases, simply adding or
subtracting a hias to the sensor allows the system to continue operation without losing the
sensor in question, One advantage of the GLR test over other IF'DI algorithms is that prior
knowledge of the magnitude of the failure is not necessary. Furiher detail on GLR’s and

MLE'’s are presented by Willsky and Jones (30, 31).

The simple hypotheses for failure and no-fail conditions may not provide the ro-
bustness needed to detect and adapt to certain failures. Detection of ramp failures is
particularly difiicult when the ramp rate varies significantly. Figure 1.2 shows the time
delay involved in detecting ramp failures. This delay occurs because the deceiving signal
is slowly moving away from the desired signal and takes more time to cross the failure

threshold. By adding filters designed to match the ramp failure, these longer delays can
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Figure 1.4. Multiple GLR Testing

be avoided. It is also desirable to design the filter based on the time of the failure. If the
filter is customized to look for a failure at a specific instant in time, then it has a better
cliance of good detection. This idea results in a very large bank of filters for long periods
of time. The disadvantage of adding filters is the increase in computations required for
multiple filters. A solution to this problem uses a sct number of filters over a window of
time. The number of filters remains constant, and the performance of the I'DI system is
often maintained (31:pp. 606-6U%). The justification for using siiding windows is discussed

by Willsky (31:pp. 604-605).

1.5.4 Chi-Square Testing. Another DI method based on residual monitoring is
a chi-square test which is similar to GLR testing in that it calculates a random variable
x(k) based on the filter outputs. One primary difference between these two algorithms is
that GLR tests are tunctions of the dynamics model and chi-s-juare tests are not, as shown
mathematically in Section 2.3. A second major diflerence is that chi-square tests do not
try 1o match the failure and only have one hypothesis, making it a binary test for fail/no-

fail. Without the ability to distinguish between types of failures, the chi-square test is not

1-16




good for isolation. However, chi-square testing is easy to implement, runs quickly, and can

provide the first level of detection in a multi-level FDI scheme.

1.5.5 Multiple Model Adaptive Estimation. A final FDI technique for discussion is
the use of multiple models that represent the dynamics of the aircraft under a variety of
conditions. Although this technique is analogous to multiple GLR. testing in many ways,
it differs in its structure and decision making process. Unlike the mu'tiple GLR testing
which modeled a variety of failures using matching filters, the multiple model adaptive
estimation (MMAE) technique models the dynamic nature of the aircraft and its sensors
to represent their behavior in the presence of a failure. Figure 1.5 shows that a separate
Kalman filter is designed for each failure condition, and the residuals are used to determine
which filler best models the aircraft and its sensors at the current time. The Kalman
filter for the jump or ramp might actually consist of many filters designed for various
magnitudes and slopes. A probabililty of accuracy ranging from zero to one is computed
for each Diter and multiplied by the filter estimates of position and velocity to weight them
appropriately. The probability—weighted estimates are added together t » form blended
estimates. This blending allows for partial failures in a sensor or combinations of failure
types. A probability of one indicates that a filter is 100% accurate in its modeling and will
completely determine the final blended estimates. A probability of zero indicates that a
flver is completely inaccurate in its modeling and will not affect the blended estimates. The
probabilily weighting computation block in Figure 1.5 represents the FDI block in Figure
1.3, and the multiple Kalman filters are in place of the single filter. MMAE is described in
detail by Brown and Hwang (3) and is extensively used in several AFIT theses concerning
stochastic estimation and control (7, 16, 17, 20, 28). An important aspect presented in
these theses is the use of multiple model adaptive control (MMAC) for system stability

and failure correction.

1.5.6 Literature Review Conclusion. The simple error detection presented in Sec-
tion 1.5.1 would normally be effective for detecting failures, but the tracking errors in the

code loop pseudorange caused by jamming or spoofing are small compared {o other intrin-
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sic errors in the GPS. The performance of the GPS would be degraded, but the failures
would not be detectable with this FDI technique (4).

Direct redundancy techniques are not feasible because multiple GPS receivers on a
single aircraft are not practical. It would also be very expensive to support extra satellites
in space desigred to provide redundancy. The concept of analytic redundancy is inherent to
the NRS design. The GPS receiver, INS measurement unit, transponders, and barometric
altimeter are sensors which are mathcmatically related to generate multiple sources of the

same information.

Multiple GLR testing and MMAE arc prime candidates for the FDI system. Both

of these techniques possess the versatilily nceded for the complex NRS, but the major




difference is the type of multiple filters required by each technique. Multiple GLR testing
uses a bank of matching filters that are somewhat less complicated than the bank of Kalman
filters used in MMAE. Both techniques were considered as final choiczs for the FDI system
design and the GLR test was chosen. Additionally, a chi-square test is investigated to see if
it can provide information in conjunction with the GLR algorithm. This leads to a multi~
level FDI scheme in which the chi-square tests provides accurate and quick detection, while

the GLR algorithm emphasizes isolation of the failure.

1.6 Methodoloyy

The three main steps of the research approach are explained in Sections 1.6.1, 1.6.2
and 1.6.3. Steps one and two will satisfy the primary goal of the thesis, while step three is

aimed at the follow-on goal included as a recommendation for future research.

1.6.1 Preliminary Studies. As mentioned in the literature review, multiple GLR
testing has the advantage of needing only one Kalman filter, as compared to MMAE which
requires a bank of such filters in parallel. Based on assumption 4, a simplified GLR test
as formulated by Willsky (31) can be used under the stipulation that the failures must be
additive in nature. This assumption may not be valid in computer simulated tests, or more
importantly, in flight tests. Therefore, it is crucial that a preliminary study be performed

on the GLR technique to verify its usefulness in this thesis.

A basic satellite orbit estimation problem can quickly test the GJ/R algorithm. The
orbit problem is clearly defined by Maybeck (14:pp. 46-48) with range measured in radius
units and time in time units. This study covers both ramp and jump failures in the range
measurement at different magnitudes and rates, as shown in Table 1.1 for this example. The
only goals of the example study were detection and identification of a failure in the range
estimate of the satellite. No effort was made to adapt to any failures. The GLR algorithm

performed favorably, so the multiple GLR testing concept was used rather than an MMAE

configuration. No preliminary study was developed to test the MMAE technique.




Table 1.1. Orbit Runs

[l Run | Failure Type | Magnitude or Rate |
1 None N/A
2 Jump 0.03 radius units
3 Jump 0.5 radius units
4 Ramp 0.75 radius units/time unit
5 Ramp 1.0 radius units/time unit

1.6.2 System Tests. With the FDI technique chosen in the preliminary study, ex-

tensive system tests were performed on the NRS. The steps in these tests include:

1. Completely define the models for the GPS, INS, and RRS based on prior research
by Negast, Snodgrass, Stacey (23, 26, 27).

2. Refine the FORTRAN code which represents these models and execute il with
MSOFE.

3. Write computer code that will take the outputs of the MSOFE simulation and run
the multiple GLR test algorithm.

4. Perform multiple simulations accounting for various failures and analyze the results.

5. Modify the design to get improved performance and return to step 2.

1.6.3 Adaptive Techniques. As meuntioned, the follow—on goal is to determine cor-
rective feedback based on the failure identification. This corrective feedback will improve
the ability of the NRS to adapt to failures or uncertainties in the modeling of the NRS. A
variety of techniques are available and some ideas are discussed in Chapter V even though

time constraints prevented research into this area.

1.6.4 Stopping Criteria. There are three main criteria for termination that coincide

with the three maia steps in the research approach.

1. In order to prevent excessive time being spent on the preliminary study and jeop-
ardizing the overall rescarch eifort, a suspense was placed on the pursuit of a work-

ing algorithm for GLR testing. If an adequate failure identification algorithm using
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GLR testing did not work, then multiple GLR tests would be abandoned and MMAE
would be pursued for the remainder of the thesis research. The GLR algorithm was

successful in the preliminary studies and was pursued throughout the research.

2. With one of the FDI techniques fully developed, several factors will determine when

the system tests are complete.

(2) The design for the basic integrated NRS in a benign environment must provide
accurate positions and velocities of the aircraft. Specifically, the NRS must
determine the aircraft’s latitude and longitude with a 1o accuracy of 13 feet (ft)
horizontal and 40 ft vertical. The 1o accuracies for velocity are 0.1 ft/second

(fps) in the north and east directions, and 0.4 fps vertically.

(b) The FDI algorithm must be able to identify failures consistently. This criterion
applies to all types of failures and variations in the magnitudes and rates of
these failures. If this goal were not reached for certain failure types, then a
determination would be made either to continue work on these failure types
or to pursue adaptive techniques for the failures that have been accurately

identified. The decision was made to focus on identification.

3. Adaptive techniques strive to meet two goals. First, stability of the NRS must be
accomplished. Stability implies that the errors in the NRS estimates of position and
velocity are not growing unbounded as time goes on. The second goal is to achieve

the same accuracies listed in 2(a) above.

1.7 Querview of Thesis

Chapter 1l presents the detailed theory used in the research. Kalman filter theory is
introduced with special attention on discretizing the dynamics of the sampled data Kalman
filter. The basics of the I'DI algorithms are discussed, including the equations implemented
for the GLR and chi-square tests. Finally, the methods used for sclecting thresholds are

presented.

Chapter III fully describes the navigation system’s parameters and operational details

through an overall system description. Models for the NRS system to include the INS, GPS




and RIS are defined in detail. The failure models used in the simulations and the GLR

algorithm are also introduced.

Results of the work done are shown in Chapter IV. The reduced order Kalman filter
is analyzed, and a discussion of the I'IDI performance is presented. Chapter V summarizes

the research through conclusions and recommendations.




11. Kelman Filtering and Failure Detection

2.1 OQverview

This chapter presents the fundamental theory for application of a Kalman filter
to the navigation problem. Basic filter equations will be presented for continuous—time
dynamics followed by a discretization process to convert the filter for processing by the
GLR algorithm. The equations for the GLR test will then show how the failure detection
is accomplished. Threshold selection will be discussed along with tradeoffs in tuning the

firter.

2.2 The Extended Kalman Filter

An extended Kalman filt~r (EKF) is chosen to provide state estimates depicting the
dynamics of the NRS components. The EKF allows for nonlinear, time—varying dynamics
and mcasurcment vectors as found in this navigation probiem. These vectors are linearized
through approximation techniques about a nominal trajectory to form a linearized Kalman
fiiter (LKF). The LKF is the basis for the EXF, which is found by linearizing about the

apdated state estimate rather than a nominal trajectory.

2.2.1 The Sampled Data Kalman Filter. Let the sy:-tem model be expressed as a

state equation of the form

x(t) = f]x(2),t] + G(t)w(t) (2.1)

where the state dynamics vector f[x(t),?] is a nonlinear function of the state vector x(t)
and time ¢. Let the process noise input matrix G(z) = I and w(t) be a white Gaussian

nosse with mean:

m, = E{w()} =0 (2.2)

and noise strength Q(¢) defined by:

E{w(tyw" (14 1)} = Q(8(r) (2:3)




Incorporate measurements z(t;) into the filter at discrete times and define them as a non-

linear function of the state vector and time:
Z(t,') = h[x(t,-), t,'] + V(t,:) (24)
where v(t;) is a zero-mean white Gaussian noise of covariance R(Z;) defined by:

E v =4 ;OT z;? (2.5)
or 1 3

and h{x(t;),t] is the nonlinear observation vector. The LKF is based on perturbation states

about a nominal state trajectory x,(¢) satisfying x,(%5) = x,, and

(1) = £lxa(8), 1] (26)

nominal states and defined as:

zn(t:) = hlxn(t:), ] (2.7)

The perturbation states are found by subtracting the nominal states in Equation (2.6)

from the original states in Equation (2.1):
[(t) = %a(0)] = Tlx(2), 1] — % (1), 1] + G()W (1) (2.8)
Equation (2.8) is approximated to first order through a truncated Taylor scries expansion:
6x(t) = F[t; x(2)] 6x,(t) + G(t)w(2) (2.9)

where §x(t) are the perturbation states. The definitions for G(t) and w(t) are unchanged
and the new linearized dynamics matrix F[¢; x,(¢)] is found by taking partial derivatives of

f{x(2), t] with respect to x(t) and evaluated at the nominal values for the trajectory x,(t) :

Fltie,(1)] = 22001 (2.10)

X X=X.(t)




The discrete-time measurements are similarly approximated to first oraer and in the per-

turbed form:

6z(t;) = H [t;;x(8;)] 6x,(2) + v(t:) (2.11)

and the same linearization process is uscd for the measurement matrix H[t;;x,(2;)], result-
ing in:
Jh[x i t,“
Hitia(t)] = 20, bl (2.12)

ox X. XA (t)

The LKF in this thesis generates error state estimates x(t) which can be added to the

nominal states to provide whole states estimates X(¢) in the form:
(1) = x,(2) + 6x(2) (2.13)

The EKF will now be formed by linearizing about the state estimate X rather than
the nominal trajectory x,. The following equations use the notation t/t; to represent
the time lstory of a given variable conditioned on the measurements taken through the
time interval [t;,%:,). Also, t; represents the value after propagation but prior to the
measurement update and £ corresponds to the value after the measurement update. The
state estimates and covariance values P(t/t;) are propagated from t; to ;3, by solving the

following diiferential equations:

%(t/t:) = £&(t/i:), 1] (2.14)
I.)(t/ti) = Flt;&(t/6)]P(¢/4:) + P(t/f'i)FT[tP‘((t/ti)] + G(t)Q(t)GT(t) (2.15)
where
Fli;x(t/t)] = gh‘:\(xi)-’ﬂ (2.16)
9 x=R(/1,)

and initial conditions are given by:

(L /L) = %(F) (217)

P(t:/t) = P(if) (2.18)




The discrete-time measurements are processed in the EKF through update equations:

K () = P(6; T [t %67 )] {Hltask(t7 PO ET [65% ()] + R} (2.19)
R(tF) = %(t7) + K(t:) {z: — h{%(6 ), 1]} (2:20)
P(tf) = P(;) = K(t)H[t:x (8P () (2:21)
where
Bh[x(_t,-), t,']

H(t) = H[L& ()] = (2.22)

ox x=%(17)
and K(¢;) is the discrete-time Kalman filter gain. Note that, for the EKF, the measurement
and dynamics vecotrs are calculated about the last state estimate X(¢;") rather than the

nominal trajactory used by a simple linearized Kalman filter.

2.2.2 The Discrete-Time Kalman Fi'ter. In order to utilize the filter outputs in
the GLR algorithm, it is necessary to discretize the state dynamics matrix into a staie
transition matrix (STM), €(#;,ti—1). All other quantities of interest such as K and H are
already in discrete form. The STM must satisfy the following diflerential equation and
initial condition (13):

d[®(t,t;-1)]/dt = F(1)®(t,t:-y) (2.23)
Dty 1) =1 (2.24)

Defining At = t; — #;_; and solving with F assumed constant over At (see assumption 6)

leads to:

B(ti, ;) = eF4 (2.25)

The state equation can now be written in the discrete form
Ox(t;) = ®(ti, tim, )0x(tin,) + Galliz,)wa(ti-y) (2.26)

where G4 and wy are discrete-time representations of G and w defined earlier.

2-4




2.3 Failurc Detection

This section will present the theory behind GLR and chi-square testing for the
purpose of failure detection. Given the Kalman filter developed in Sections 2.1 and 2.2, an
algorithm can be used to observe changes in the residuals. If the changes are significant,
they will represent failures in the system by causing the GLR or chi-square value to exceed

a threshold. Windowing will be applied as discussed in Chapter 1.

2.3.1 GLR FEquations. The primary goal is to define a likelihood function {(2;,6)
that, when compared to a threshold, will identify the onset of a failure such as jamming
or spoofing. Two hypotheses are established with a Kalman filter based ¢n Hy (no failure)
and matching filters based on I, (a failure has occurred). The Kalman filter state equation

from Section 2.2 is in the discrete form
6x°(:) = B(ti, i, )65 (ticy) + Galtic, )Wa(tiy) (2.27)
with discrete measurcments described by
62°(t;) = H(;)6x°(t:) + v(t:) (2.28)

The matching filters will not provide state estimation but are designed for failure detection

and will have the form

6X1(t,') = <I>(t;,t,--.l)6x1(tg_,) +- Gd(t,'_l)wd(t,'_,) (229)

and

6z (;) = H(t;)6x (&) -+ v(t;) + d(t:)n(t:, 9)v (2.30)

where

d(t;) =  failure vector
n(t;,0) = failure function
v = unkaown size of the failure

g = unknown time of the failure




Comparison of Equations (2.28) and (2.30) shows that a matching filter can assume a
failure in the system by modeling it as some variation in the actual measurement beyond
the variations caused by dynamics of the system. Although the failure is modeled as a
bias on the measurement, this model can also represent changes in the states caused by
real world anomalies. Further definition of the new failure quantities in Equation (2.30)
will show how the failures arec modeled in the matching filter. The failure vector d(%;) is
r~by—1 where ris the number of measurements. The 1’s in the failure vector indicate which
measurement devices are assumed {o be induced with a failure and the other elements of
d(t;) are zero. The failure function n(i;,8) tells the matching filter where the failure is
assumed to occur within the window (see assumption 12) and the form of the failure such
as a step function. This allows the generation of a different GLR based on different failure
times. For example, if the failure is assumned to be a unit step and to occur 3 time units
from the front of the window, then # = 3 and

n(ti,0) = 1 for 62>3 (231)
= 0 for <3 .

Finally, the size v simply dictates the unknown magnitude of the failure, whereas n(t;,8)
and d(1;) are predetermined design parameters. It is important to note that, by not
making v a predetermined constant, it will actually be estimated by the GLR. algorithm as
shown later and can be used to provide corrective feedback. Section 3.4 provides a detailed

discussion of how the failures are modeled using these equations.

In general, the likelihood function or GLR, [(2;,0), is based on maximum likelihood
estimates of § and v designated as J and 7, When considering all possible values of 8 within
the window, the GLR with the largest value indicates the presence and time of the failure.
The derivation shown by Riggins (25:pp. 112-115) illustrates that in forming I(¢;, 6), it
is inherently maximized over v but obtaining an MLE of 8 is based on the definition of

n(t;,0). With n(t;,08)=one for all t;, only a single likelihood function will be calculated

and it will not deiect the failure until it reaches the beginning of the window. Therefore,




the GLR’s are based on # but not §. The primary reason for this decision is to reduce
the computation time that increases significantly when calculating several GLR’s based on

different values of 6.

The Kalman filter residuals y(t;) are shown in Equation (2.20) and are defined by
7(t) = 2 — h[X(47), 4] (2.32)

and tl~ residuals can be expressed for each hypothesis as
Hy:9(8) = v%(t) Hy iy(t) = 7°() + m(t, 0)v (2.33)

For a Kalman filter successfully tracking the true states, v°(f;) will appear as zecro-mean
white Gaussian noise of covariance A = HP"HT + R. With a failure induced on the mea-
surements, a signal of unknown magnitude, m(t;, @)r, will also be present in the residuals
with v defined earlier and m(%;,8) presented momentarily. It is the goal of the GLR algo-
rithm to identify this signal by recognizing variations in the residuals from their norinal
unfailed values. The GLR tests are particularly good at detecting jumps in the residuals
with the key being how closely the matching filters model the actual failures. Section 1.5.4
stated that the GLR algorithm is a function of overall system behavior (® and H) and
Kalman filter gain K. This is shown mathematically in Equations (2.34) and (2.35) with
the derivation shown by Riggins (25:pp. 112-115). The failure residual offset m(t;,0) is

found through
m(t;, 0) = H(t,')y(t,', 0) + d(t;)’ll(t.', 0) (234)

where the recursive failure quantity y(ti4+1,0) is given by
¥(tig1,0) = ®(ti, ;o) [T = K(6)H(L)] y (4, 0) — (1, ) K(8)d(L)n{ti, 6)  (2.35) e

With the failure assumed to occur at the beginning of the window (sce assumption 12),

Equations (2.34) and (2.35) can be simplified by setting n(¢;,8)=one for all ¢

L e,

V(tig1,0) = S, tey) [T = K(G)H()] y (2, 0) — @4, 42K (G)d(L) (2.36) '
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m(t;) = H(t)y(t:) + d(t) (2.37)

The consequence of this simplification is a delay in detecting a failure because the failure is
not realized until it reaches the beginning of the window. The combination of the Kalman
filter outputs and the mat-hing filter model will deiermine the magnitude of the likelihood

function defined as:

I(t;,0) = ST(t;,0)C™1(1:.60)5(t;,6) o (2.38)
where .
$(t,6) = Y- m (1, 0)A (1)1 (t;) (2.39)
C(t;,0) = Z m’(t;,0)A~(t;)m(t;,0) (2.40)
given
A(4) = H(L)P()H (1) + R (2.41)

and the MLE of the unknown magnitude of the failure, v, is found by:

_ S(4,0)

Hiob) = T )

(2.12)

The residual covariance A(t;) and the residuals are combined with Equations (2.34) and

(2.35) or Equations (2.36) and (2.37) to give a linear combination of the residuals S(t;,6)

1'731 (4 9) dcrﬂl\

N . v 1n
Ut Ly by ALALR L f tew

rule based on a threshold, ¢, would be

I(t;,0) > €= FAILURE

I(t,0) € €= NO FAILURE (2.43)

2.3.2 Chi-Square Equations. A chi-square test will be used and is based on the

Kalman filter residuals y(#;) which are zero mean and white with known residual covariance
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A(t;). The chi-square random varjable x(1;) is given by

k

x) = Y, YA () (2.44)

j=k—N+1

with N being the size of a sliding window. Notice that the system dynamics are not
included in Equation (2.44) and that only one failure hypothesis is available. This agrees
with the discussion in Section 1.5.4 about the simplicity of the chi-square algorithin, A

detection rule based on an established threshold € would be

x(tx) > €= FAILURE

x(t) < €= NO FAILURE (2.45)

2.8.83 Threshold Selection and Filter Tuning. All thresholds used in the FDI logic
will be determined empirically. Three major concerns wiil be considered in seleciing final
threshold values. First, the thresholds must be low enough to prevent delays in detecting
failures. Similarly, they rivst be low enough to prevent missed alarms caused by GLR or
x values dropping below the threshold while an actual failure is still present. Finally, the
thresholds must be high enough to prevent false alarms caused by variationsin the GLR and
x values. These variations may result from aircraft maneuvers or unpredictable changes
in the random measurement noise. If the filter is tuned sufficiently for both good tracking

and enhanced failure detection, then these variasvions or netse floor will be relatively low.

When tuning the Kalman filter, a major {radeoff muast be made to meet the goals
for state estimation and failure detection. Adjusting the process noise and measurement
ncise values to enhance FDI capabilities may degrade state estimation and vice versa.
This can be seen in Equation (2.41) by realizing that reductions in R will cause reductions
in A, resulting in better possible moaitoring of ihe residuals. The consequence is that
reductions in R will cause an increase in -g‘, resulting in a conservatively tuned filter. The
primary goal of the NRS filter is to provide a navigation solution within the operational

specifications listed in Chapter I. Once this goal is met, the measurement noise for the filter

can be reduced to aliow better FDI, while the process noise is increased to maintain good




tuning of the filter. Observation of the state estimates, measurement residuals and the
residual covariance A(t;) will indicate a point of diwminishing returns using this technique.
Once the filter has been tuned via multi-run simulations to provide optimum residual
monitoring without seriously degrading state estimation, single-run simulations will be

used to evaluate actual FDI perforimnance.

2.4 Summary

This chapter provided the theorectical basis for the remaining chapters. The actual
models for the Kalman filter and the system are presented in Chapter III along wiih the
details of the matching filter design for the GLR algorithm. Verification of the discretiza-
tion process is shown in Chapter IV. Also included in Chapter IV, are the results obtained

by applying the equations discussed in Chapter II, including the filter performance, FDI

performance and tradeoffs encountered concerning threshold selection and filter tuning.




II1. Navigeiion and Failure Models

3.1 Owverview

This chapter describes the models for each of the three navigation systems and the
failure models. An overall system description is given, followed by detailed state and
measurement equations. Finally, the methods used to simulate the various failures are

shown as they apply to the theory in Chapter II.

3.2 Querall System Description

A brief reiteration of the basic elements in the system is helpful for this discus-
sion. The three navigation systems are the GPS, INS, and RRS. There are 14 measure-
ments provided to the Kalman filter, including four satellitc vehicle (SV) pseudoranges, six
transponder ranges, three—-axis velocity aiding from a Doppler system and altitude from
the barometric altimeter. A total of Y7 error states about nominal vaiues make up the
truth model to represent the real world. A total of 15 error states are used for the Kalman

filter model.

A block diagram depicting the NRS truth and filter models is shown in Figure 3.1.
The true aircraft position x is generated by PROFGEN and provided to each navigation
system. The SV positions are generated by ORBIT and combined with the true aircraft
position to obtain pseudoranges for use by the GPS. Each navigation system generates
perturbations from the true range and the final difference measurements are then formed
by subtracting the GPS aud RRS measured ranges from their corresponding INS calculated
ranges. The EKF propagates equations that represent the NRS and uses the measurements
to update estimates of the error states. I'inally, these cstimates are used to correct the

original INS indicated position.

3.3 Maodel Descriptions

The truth model consists of 41 INS states, 26 RRS states, and 30 GPS states. The
filter model consists of 11 INS states, two RRS states, and two GPS states. The following

sections will provide details and justification for these model sclections.
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INS. The INS is a strapped—down wander aximuth system that senses aircrafl motion via
gyros and accelerometers and is used as the primary source for navigation. A 93-state

model is presented with specific interest in the 41 states kept for the truth model. The

N ’i=x+6x|N—S V)

|_' INS 5% s ) :
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N

+ .

X Range

RRS Ane Computation EXTENDED P

S ) KALMAN A
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+
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PROFGEN ——_‘___ True Range =
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Figure 3.1. Truth and Filter Model Block Diagram

3.5.1 INS Model. This section piesents the truth and filter models used for the

reduced order filter medel is then discussed.

3.8.1.1 The 93-State LN-93 Error Model, The 41 INS states were extracted
from an original 93--State INS model based on the Litton LN-93 error state model which

is described using six categories oi states:

ox =[ 6x,7 ox,7 bx,7 ox,” bx,T oxs" |T (3.1)




where 6x is a 93 X 1 column vector and:

6x, represents the “general” error vector containing 13 position, velocity, attitude,

and vertical channel errors.

6%, consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-
correlated errors, and “trend” states. These states are modeled as first order

Markov processes in the truth (system) model.

6x, represents gyrce bias errors. These 18 states are modeled as random constants

in the truth model.

0x, is composed of the accelerometer bias error states. These 22 states are modeled

in exactly the same manner as the gyro bias states.

ox, depicts accelerometer and gyro initial thermal transients. "he 6 thermal tran-

sient states are first order Markov processes in the system model.

6x¢ models the gyro compliance errors. These 18 error states are modeled as biases

in the system model.

The truth model system state space differential equation is given by:

3 [~ ( R (
0X, Fi, Fi; Fiz Fiu Fy; Fys ] 0x, w, W
6*, 0 Fzz 0 0 0 0 6)(, A\
5)1:3 0 1) (1] 0 0 0 6x3 G
1 b = 4 4 4 (3.2)

65c4 0 0 0 0 0 0 6:{4 0
6}'(5 0 0 0 0 F;; O 6x5 0

L 6;(6 ) | 0 ] ] o 0 G {6)(6 ) | 0 )

A full desription of the submatrices for this equation is given in the Litton LN--93 manual

(9)-

3.3.1.2 The {1-State INS Error Model. The large number of states in the
L.N-93 model results in a truth model that is cumbersome to the simulaiion software.

Studies by Negast and others have shown that 41 states are suflicient to represent the INS




truth model accurately (10, 23). With only 41 of the original 93 states selected ror use
in this thesis, the submatrices in Equation (3.2) are reduced significeniy. Appendix A,
Tables A.1 and A.2 show the 41 states chosen for this thesis and Appendix B presents the

equations and state dynamics noise values used in the stbmatrices.

3.3.1.8 INS Measurement Models The two measurements associated with the
INS are the barometric altimeter aiding and the Doppler based velocity aiding. As men-
tioned previously, the altimeter aiding is used to overcome the instability inherent ir the
vertical channel of the INS. The altimeter output is modeled as the sum of the true altitude
h;, the total error in the barometric altimeter éhp, and a random measurement noise v.
Similarly, the INS calculated altitude is the sum of the true altitude and the INS error
in vehicle altitude above the reference ellipsoid, 6h. A difference measurement is used to

elimninate the unknown true altitude, h4, resulting in Equation 3.3.

= [1]6h — [bhs + v (3.3)

A perfect Doppler system provides velocity aiding to the INS based on assumption 13. The
Doppler aiding could come from the GPS or a simple radar system. This measurement
source is not particularly significant for most of the thesis, but it does allow the filter to
generate better estimates of the velocity states. A simple model is assumed for the Doppler
measurement. All thiee channels (north, east, and up) are represented by the difference
petween the truth state velocity error, §V;,, and the filter state velocity error, §V;, as shown
in Equation (3.4).

0z = 6V, — 6V, where i =3x,y,2 (3.4)

Although this model seems somewhat unrealistic in that it provides the filter with an
ideal measurement for velocities, it does not skew the performance of the FDI algorithm
because these measurements are not used in the FDI calculations. The primary reason for
including the Doppler measurements was for con:parison of the filter performance against

piior AFIT theses (23, 26, 27).
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3.3.1.4 The Reduced 11-State INS Filter Model. The number of states in the
Kalman filter is further reduced from the 41-state truth model. Consideration was given
to magnitudes of the states and their estimability when deciding which states could be
eliminated for the filter. The reduced corder filter had to be tuned to compensate for the
eliminated states by adjusting dynamics noise and measurement noise values. Table A.5
shows the 11-states used for the INS filter model and Tables B.10 and B.11 show the final

tuning parameters used in the filter.

3.5.2 The 26-State RRS Error Model. The Range/Range-Rate System (RRS) nav-
igation aiuing system is modeled using 26 states for six ground-based transponders {23, 27).
The RR.C inicrrogates the transponders cellecting the electromagnetic (EM) signals they
erait. Thess signals represent position information used to calculate a navigation solution
whick cupports tiie INS. Table A.3 shows the 26 states and their corresponding state num-
ber in the overall 97-state truth model. There are two states common to each transponder

and four which are modeled separately for eack transponder.

3.3.2.1 RRS Model Equations. The two cominon states for the transponders
are a result of errors in user hardware. They appear as bias terms and are modeled as

random constants. Their state equations are given by:
Ty 0 0 Tpy
U ) L8 0%
where

Tpp = range equivalent of interrogator bias
Ty = velocity equivalent of interrogator bias

The initial conditions for these states were chosen to be consistent with previous AFIT

research (23, 26, 27) and are:




- (3.6)

and
1ft? 0

(3.7)
0 107%ft?/sec?

The four states which are unique to each transponder represent thke error in the surveyed
position (x,y, and z} of the transpcniers and the atmospheric propagation delay between
the transponder and the receiving aircraft or user. The position errors are modeled as
random constants and the atmospheric error is represented by a first order Markov process.
The state equations for these error sources are shown below with ¢ used to represent the

various transponders:;

' T; ] (0 0 0 0 [ z; \ ' Wy, }
gi 0 6 0 0 Yi Wy, .
{ y = b+ 4 o (3.8)
% 00 % 0 z; w,,
L 6:Ratm,- ) i 0 ¢ o0 _ﬁ; i 6-Ratm,' ) L Warm, y

The initial conditions for these states were chosen to be consistent with previous AFIT

research (23, 26, 27) and are:

i::,y,z,atm(f'o) =0 (39)
[ 25f22 0 0 0 |
_ 0 2512 0 0
P.‘c,y,z,atm(to) = (310)
0 0 25t 0
| 0 0o 0 100(PPM) |

and

E{w:ﬂ.y.z,atm(t)} =0

(3.11)




(000 o0 |
. . 000 0 '
1'1 {W,,,y,,,atm(t)w :z:,y,z,atm(t + T)} = 6(7_) (3.12)
0 00 0
0 0 0 203,
L 300 U
with o2, = = 1071012,

3.3.2.2 RRS Measurement Model. The system description identified measure-
ment sources which included RRS ranges. The RRS measurements indicate the range from
the transponders to the user and Figure 3.2 shows the errors in the true positions. This
measurement is expressed in Equation (3.13) as the sum of the true range, error sources,

anuu a random measurement noise v.

RRRS = Rt + 6Ratm + bRb + v (3.13)
wheie
Rpps = RRS range measurement, from transponder to user
R = true range, from transponder to user
SRatn = range error due to atmospheric delay
oRy =  error due to equipment bias
v = zero--mean white Gaussian measurement noise

The true range R, is not actually known, sc a difference measurement, §z must be obtained

using i::e range, Rins, from the transponder to the user. This range is not a measurement,

but is calculated by the INS using Equation (3.14).




where X, and X, represent the user and transponder position vectors in the earth centered

earth fixed (ECEF) frame respectively. Another way to write Equation (3.14) is:

RINS = \/(xu - x‘r)z + (yu = Yr )2 + (zu - ZT)2 (315)

Figure 3.2 shows that X, and X, a:e not completely known and have some error, Based on
assumption 11 with perturbations representing tne errors in X,, and X, Equation (3.15)
can be approximated and written in terms of the true range and a truncated first-order

Talyor series:

RINS —_ Rt BRINS(XT’ xU) . 6XT
6x1‘ (x’l‘ ,xu)nom
OR
G —psaTs - 6X, (3.16)
axU (xT yxu)nom

The solution for R;ys is found by substituting Equation (3.15) into Eyuation (3.16) and

evaluating the partial derivatives to get:

T, —Z Y — ¥y ] o Z,— Z
R = A— Dot MK 2 R - U T U
INS Rt [ Iansl ] 6a’u l I-ancl ] byu [ IR ] 6ZU

uvsl

T, —~I, . Y, — ¥, z
+ [T “] éw,. + [T ”—]-6y + [T ] 8z, 3.17
Bl 1% (R T] % R (3.17)

Finally, the difference measurement is given as:

62 = R

INS Rnns

z,—x, . Y — zn — 2
'bwu - [ T {/].6 - [ T U].ézu
[ R, sl ] T R 1Ronsl .

T, —Z oy, ~vy, Zp = 2
e+ k] + [
Fi] IR0l 1Y 1R sl

[6Rum — [1]6Ry — w (3.18)

i

3.8.2.83 The Reduced Two-State RRS Filter Model. The same goal of reducing

the number of states in the filter was met with the RRS model. Research at CIGTF has




Earth Center

Figure 3.2. RR3 Measurements

shown that retaining only the first two states, which are common to all the transponders,

can piovide good filter periorman ity errors die to
equipment bias and are represented as é R, in Equation (3.18). Previous AFIT researchers
have kept all 26 states in the filter because state reduction was not a major goal. The
scenario for this thesis requires a filter of few states, so an eflort was made to prove that
the two-state filter was adequate for navigation through comparison to the 26-state model
results cbtained by Negast (23). Filter tuning included increases in strengihs of dynamics

and measurement noises with final values shown in Tables B.10 and B.11.

3.8.8 The 30-Statc GPS Error Model. The third and final navigation system is

based on EM signals transmitted from orbiting satellites. Although similar in concept

to the RRS, the GPS is modeled somewhat differently. This model has been developed




through research at AFIT and many of its fundamental concepts arc addressed in a variety
of sources (12, 23, 26, 27). The dynamics and measurement equatijons for the full 30-state
truth model are prescnted followed by the reduced two-state filter model. A tabular listing
of the 30-state model is shown in Table A.4 and the two filter states chosen are listed in

Table A.5.

3.3.8.1 GPS Model Equations. There are five types of error sources that are

modeled. The first two states represent the errors in the user clock and are modeled as

follows:
TU clky 01 Ty ik,
= (3.19)
LU ciky, o0 Ty clky,
where
Tyclk, = range equivaient of user sei clock blas
Ty elkg, = velocity equivalent of user set clock drift

The initial state estimates and covariances for these states were chosen to be consistent

with previous AFIT research (23, 26, 27) and are:

- 0
Uclk ( 0)‘ - (3.20)
l Zyeikg,(bo) J LU _|
and
9.0 x 10**f¢? 0 o
Puciky,vetky, (to) = (3.21)
0 9.0 X 1019112 /sec?

Because these error sources are a function of the user equipment, they are common
to all the S¥’s. The remaining four types of errors are unique to each SV, based on
their individual equipment and their position with respect to the user. One SV specific
error source is the code loop error. Ajthough the code loop is part of the user equipment

shared by all the SV’, its error magnitude is relative to cach SV. Next is the atmospheric

interference with the EM signals as rclated o the ionospheric and tropospheric delay in




the signals propagation. The code loop error, tropospheric delay, and ionospheric delay
are all modeled as first order Markov processes with time constants shown in Equation
(3.22). All three are driven by zero-mean white Gaussian noise with strengths shown in

Equation (3.25).

The fourth error source is due to inaccuracies in the clocks on board the SV’s and
the final error source is based on line—of-s¢ight errors between the SV’s and the receiver.

The models for these states are shown in Equation (3.22) - (3.25).

6R. | [ -1 0 0o 000 0] 6By ) Wy |
6Ryrop 0 - 0 0000 § v op Wirop
dRion 0 0 -5 0000 6R;., Wion
] 6R,., = 0 0 0 0000 6R,,, ¢ + 3 0 ¢
by, & 0 6 6 ¢ 00 §z,, 0
8y, 0 0 0 0000 8y, 0
| bz, [ 0 o 0 000 0] 6z | o
(3.22)
with initial covariances given by
[ 025/ 0 0 0 0 0 0 ]
0 10ft2 0 0 0 0 0
0 0 10ft2 0 0 0 0
Pops(te) = 0 0 0 25ft° 0 ¢ 0 (3.23)
0 0 0 0 25f12 0 0
0 0 0 0 0 25ft2 0
0 0 0 0 0 0 25ft°

and means and noise strengths:




where

'‘GPS

bR,

8 Rurop
6Rion
6RScIk
SR

Oy ik

E {wcrs(t)ngps(t + T)} =

i

It

]

it

]

0.5 0 0 09000
0 0004 0 0 000
0 ¢ 0004 0 00 0
0 0 0 0 0 0 0] ft*/sec -6(t) (3.25)
0 0 0 0000
0 0 0 0000
L 00 0 00 6 0]

3.8.3.2 GPS Measurement Model. The pscudorange measurements between
the user and the SV’s is shown in Figure 3.3 as K,,,.,. This measurement is the sum of the

true range, several eiror sources and a random noise:

Ryps = Ry + 6Roi + 6Rupop + 0 Rign + 6R,, + 6R,,,, + (3.26)

GPS pseudorange measurement, from SV to user
true range, from SV to user

range error due to code loop error

range error due to tropospheric delay

range error due to ionospheric delay

range error due to SV clock error

range error due to Tser clock error

zero—mean white Gaussian mcasurement noise

Because K; is not available to the filter, a substitution will be made to eliminate this term
through the same techniques used to solve for the RRS measurement equation. First, the

satellite position vector X, and the user position vector X, are defined as:

€ €
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Figure 3.3. GPS Measurements
then the pseudorange froimn the user to the satellites is calculated by the INS as:
4 [
W o, s
R,.. = |X, - X‘;l = Yy - Yy (3.28)
zll J ZS
An equivalent form for Equation (3.28) is:

Rive = (&p =22+ (90 — )P + (2 ~ 2,)?

(3.29)
(3.29) can be approximated and written in terms of the true range and a truncated ficst-
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Based on assumption 11 with perturbations representing the errors in X, and X _, Equation




order Taylor series:

OR,,.(X.,X,) i
= R INS S u R 6h
Rl NS t axs (Xs X, Yo s
(X X,,) .
Roe 56X, 2.30
X, (XX Jnom (2.30)

The solution for R;ns is found by substituting Equation (3.29) into Equation (3.30) and

evaluating the partial derivatives to get:

Tr. — T Ys — Y zq —
R,.. = R - [5 ] sz, — [i——”]-ﬁyu - [ ] 0z,
v ’ |, sl VR |R,nsl
LTs — & ys Yu . U.I
+ [ "] bz, + [ ] by, + [ 8z, (3.31
Bl o] Bl | )

Finally, the GPS pseudorange difference measurement is given as:

0z = Hns — Regps
- - [l e - k] - [
= - y - bz
[ IR ns) |. v IR, sl ¢

i) o+ [ on + [y] o

- [l]tSRc( - [1]6Rtrop - [1]6Rl'0"

+

[1]61?,56”, - [1]6Rucu¢ -0 (3.32)

3.3.3.3 The Reduced Two-State GPS Fiiter Model. Various research efforts
have shown that two states provide a sufficient model for a GPS (10, 23) The primary
argument is that the errors modeled by the other 28 states are su | when compared to
states one and two which are common to all SV’s. By adding measurement noise (increasing

R) and retuning the filter, the overall performance of the NRS can be maintained with

a significanily reduced order model. The final noise values are shown in Tables 13.10 an-

B.11.




3.4 Failure Modeis

This section discusses the methods used to model failures in the MSOFE simulations -

and the corresponding modeis used by the FDI algorithm for detection.

3.4.1 Simulation Failure Models. The 10 different types of failures that were mod-
eled are presented with actual values in Table 3.1. A short description of each failure is as

follows:

1. Jamming ~ Jamming is modeled as a sudden increase or jump in the measurement
noise associated with all four SV’s. This failure is induced in all SV signals because
the jamming is assumed to occur at the receiver, which will affect all four channels
simultaneously. The jamming noise, RS, is added to the systemn model measurements
only, with values shown in Table 3.1. These values represent various levels of jamming
which result in lower carrier-to-noise ratios, C'/Ny, of the GPS signal and were

calculated using:
RS KB,  EK;bB,
A T (C/Ny) T (C/No)?

(3.23)

where
RS = jamming noise added 1o system measurement noise
A = code modulation chip width
C/Ny = carrier-to-noise ratio
B,, = code tracking luop noise bandwidth
B; = one-sided IF bandwidth
K; = code mechanization parameter constant

K, = code mechanization paramncier constant

The theory cupporting Equation (3.33) can be found in an article by Martin (12).




Table 3.1. Failure Types and Models

IL Run i Goal | Faii Type ] Method | Time Frame L Comments ”
0 Baseline No Fajlure N/A N/A
1 Heavy Jump in Increase R 2000-4000 sec | C/Ny = 15 dB-Hz
Jamming | Measurement Noise | from 2 to 4000
2 | Medium Jump in ' Increase R | 20004000 sec | C/N, = 20 dB-Hz
Jamming | Measurement Noise | from 2 to 500
3 Light Jump in Increase R 2000--4000 sec | C/Ny = 25 dB-Hz
Jamming | Measurement Noise | from 2 io 30
"4 | Spoofing Bias on ONE Add bias=7000 | 2000-4000 sec Causes 1 mi
Measurement to SV1 position error
5 Spoofing Bias on ONE Add bias=700 | 2000-4000 sec Causes 500 ft
Measurement to SV1 position error
6 Spoofing Bias on ONE Add bias=T00 | 4000-6009 sec Causes 500 ft
Measurement to SV1 position error
7 Spoofing Bias on ALL Add bias=700 | 2000-4000 sec Causes small
Measurements to SV1-8V4 position error
8 | Spoofing Ramp on ONE Add ramp=2T | 1500-6000 sec | Causes 1 1/2 miles
Meas rement, to SV1 position error
9 Spoofing Ramp on ONE Add ramp=1T | 2000--3000 sec Causes 700 ft
Measurement to SV1 posilion error
10 | GPS Fail Loss of ONE SV1=0over | 2000-2200sec | Causes complete
Measurement time frame disruption
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2. Spoofing

(a) Model A — A bias is added to the measurements associated with one or all four
SV’s designated SV1-SV4. This bias will be added suddenly in time and the
values chosen represent a variety of spoofers. An intelligent spoofer will have an
accurate estimation of the measurements being received by the aircraft from the
satellites and can discretely add an undetectable bias to these measurements. A
less sophisticated spoofer would have to use a larger bias to ensure effeciiveness
in corrupting the measureraents while running the risk of being detected. A
simple method was used to determine the amount of bias added to the pseu-
dorange and is illustrated through an example. Assume the spoofer wanted
to pull the aircraft approximately one mile off course in terms of latitude and
longitude. The net distance error would be the magnitude of the change in the

filter computed latitude and longitude error with and without the spoofer:

Distance error = \/(50,, — 80.4p00s )% + (660, — 00,4005 )? (3.34)
where
80,.0p00y =  latitude error with spoofing
66,500y =  longivude error with spoofing

The altitude channel is not used to compute the distance error because altitude
information is readily available from other instruments and the goal is to draw
the aircraft off target. Figure C.3 shows the increase in the filter-computed
errors in all three channels and the resulting distance error of approximately
one mile over the time frame of the failure for a bias of 7000 ft on SV1. Only
one of the simulation runs will induce the bias in more than one SV signal. It
is considered unrealistic that a spoofer would be able to identify all four SV’s
selected by the GPS receiver consistently because the SV’s are chosen based on
their geographic relation to the receiver. The spoofer would not only be more

complex, but would require four receiver/transmitiers to accomplish this task.
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Finally, simultaneously adding a bias to all four SV measurements would appear
as an increase in the user clock bias error and would be quickly compensated
by the fiiter. In contrast, a bias added to only one of the four GPS channels
should cause errors in the navigation solution and degrade filter performance
throughout the time frame of the failure. A single run will be performed to

verify these predictions and show the distinction of these failure types.

(b) Model B - An even more subtle failure would be a ramped value added ic ile
SV measurements. The ramp rates are somewhat arbitrary but wite the sams
basic idea of slowly drawing the aircraft off course. Slopes of one ft/sec and iwo
ft/sec are simulated with net position errors of 700 ft after 1000 sec and 1 1/2
miies after 4500 sec, respectively. Simulations were not performed with & ramp

value added to all the measurements as explained above.

3. GPS failure — Represented as a loss of one or all SV measurements and modeled by
setting the measurement z=0. The time frame illustrates that the 5V will be lost
for a period of time but may be reacquired. Simulations with all four SV signals
removed will not be done, as failing one channel has the same effect of completely

disrupting the filter.

3.4.2 FDI Failure Models. The multiple GLR algorithm allows for various hypothe-
ses based on the types of failures being detected. A different failure model can be formed
for each matching filter to optimize detection and isolaticn of failures through observa-
tion of the MLE’s and GLR’s associated with each matching filter. In simpler terms, the
matching filter with the largest GLR is deemed the most correct in finding the failure.
Given a group of different failures, a matching filter could be generated based on each
failure type or a less complex FDI scheme would be to model only the most likely fail-
ures. By selectively choosing a bank of matching filters to cover most of the failures, the
computational burden on the computer running the FDI algorithm can be reduced froin
one running an excessive number of filters in parallel. This concept is used in conjunction
with a simple chi-square test to form a two-level I'DI scheme. The first level consists of

both the cli-square test and five matching filters 10 provide initial detection of a failure.
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The second level is used to isolate the failure based on the five GLR outputs alone. This
scheme benefits from the simplicity and reliability of the chi—square test and the flexibility

of the multiple GLR tests.

The failure quantities in Equation (2.30} are specifically defined to represent the
matching filter models. The function n(;,6) is equal to one for all ¢;, which implies that
the failure occurs at the beginning of the window (see assumption 12). The failure vector
d(¢;) is defined in gereral as
[ SV1 -
SV2
SV3
SV4
d(t;) = TR (3.35)
TR2
TR3
TR4
TR5

TR6

where 5V1 - SV4 and TR1 ~ TRS represent the sa,télli*ue vehicles and transponders re-
spectively and will have a value of zero or one for this simplified model. Note that the
Doppler and aitimeter measurements are not included in these models because their mea-
surement residuals are virtually unaffected by the failures in question and they slow down
the algorithm when included in these equations. The plots of the GLR test using all
14 measurements (Doppler and altimeter included) are not presented because they look

essentially the same as the GLR test using only 10 measurements.

The first four matching filters assume a failure in only one of the four SV’s and the
last filter models a failure in all SV’s simultaneously, resulting in failure vectors of the

form:




SVl Sv2 §8v3 Sv4  SVi+4

(1] Jo] Jol] [o] 11]
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
a(¢;) = 0 , 0 , 0 , ‘ or 0 (3.36)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 6
0 0 0 0 0
o] o] (o] le] Lo]

These models should perform well on bias type failures and encounter some delay in de-
tecting ramp type failures. This is expected since the matching filters are designec for
biases and not ramgs, but the ramp results will show how well the filters perform on other
types of failures. Further studies could include more complex models specifically designed

to detect ramp failures.

3.5 Summary

ThLis chapter presented the details for both the navigation filter and failure models.
The basis for the measurement models was discussed to help describe the intricacies of
the NRS design. The state and dynamics model descriptions illustrate the high degree
of nonlinearity and time-variance of the system. The reduced order filter models were
presented, including consideration of the critical job of tuning the NRS filter. The methods
used to induce the failures in the simulations were shown along with the models for the
matching filters designed to detect and isolate these failures. Results and analysis of these

simulations are presented in the next chapter.
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IV. Resuit: and Analysis

4.1 Assumption Verification

Oze of the primary concerns in this rercarch has been to verify assumption 6 pre-
sented in Chapter I. The GLR algorithm requirc. & discretized version of the state dynamics
matrix F which was assumed piecewise constant cver the two-second sample period. All
43 time varying elements of ¥ were carefully scratirized to ensure that they did not change
significantly between samples. Figure C.2(a) shows the worst case element of F in terms
of time variance over the entire simulation. From this plot it is hard to see if the high
dynamics are being preserved over the sample periad. Yigure C.2(b) provides a closer look
at the changes occurring in this plot during the most dynamic time period. The time scale
in Ligure C.2(b) is reduced so that values at every two-second sample are clearly seen.
From this plot it is obvious that the quickly changing nature of the F matrix is preserved
with a sample time of two seconds, so the discretized STM, @, based on assumption 6 will

be valid.

4.2 NRS Filter Performance

A variety of simulations were run on MSOFE to determine the final tuning values
chosen for the filter. Observation of state statistics and measurement residuals gave insights
into adjustments of the tuning values necessary to provide good state estimation while
enhancing FDI potential as discussed in Section 2.3.3. The state plots in Appendix D
represent a well tuned filter with the primary concern being to reduce the mean error for
each state. A quick method for evaluating how weil the filter is tuned is to ensure that the
meantsigma for the state error is bounded by the filter—computed zerotsigma. The FDI
potential is evaluated using the residual plots and the goal is to bound the residuald:sigma
by the filter-computed zerotsigma derived from the residual covariance. The baseline
plots shown in Figures D.16-D.20 indicate that further reduction of the measurement
noise covariance, R, would improve the ¥'DI performance based on A = HP-H7T 4 R.
HHowever, lower values of R caused serious degradation of filter tuning for state estimation

performance. Tt is also unrealistic for R to have values below the actual measurement
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device noise variance values. Therefore, a tradeoff was made resulting in final values for Q

and R shown in Tables B.10 and B.11.

The 15-state filter performance is compared against the results of the thesis by Negast
(23) and the operational specifications listed in Section 1.6.4. All results are based on 10-
run Monte Carlo simulations with ensemble averaging perforimed over the 10 runs, Negast
conducted studies on a variety of reduced order filters with some of his results shown in
Table 4.1. The values presented are the temporal averages of the ensemble averages of true
filter estimation errors (1o') for the position, velocity, and attitude errors over the two-hour
flight profile. Both the 97- and 69-state filters were evaluated against a 128-state truth
model defined by Negast. The 15-state filter used in this thesis was evaluated against
the 97-state truth model defined earlier. Although this disparity could slightly skew the
results, a comparison of the filter performance is still worthwhile in demonstrating the

ability of the 15-state filter to provide a good navigation solution.

Table 4.1. Temporal Averages of True Filter Errors (10)

Filter || Lati- | Longi- | Alti- || East | North | Up East | North | Azi-
tude | tude | tude | Vel Vel Vel Tilt Tit | muth
| (&) (ft) (ft) || (fps) | (fps) | (fps) || (arcs) | (arcs) | (arcs)
| Desired [ 13.00 | 13.00 | 40.00 ]] 0.100 | 0.100 | 0.400 || 1 1 i
97-NRS || 1.35 2.Mn 5.28 |/ 0.014 | 0.010 | 0.045 || 1.07 1.29 9.74 |

69-NRS 3.28 4.21 9.04 | 0.033 | 0.026 | 0.070 1.37 2.11 18.42
15-NRS 4.00 7.99 R.R2 0032 | 0020 { 0070 313 4 .49 17 .57

Telur vawrd Vel 1 Ve

All the operational specifications were easily met and exceeded as shown in Table
4.1. It is clear from the results that the overall performance of the 15-state NRS filter is
degraded in comparison to the higher order filters. Some of the errors are actually better
for the 15-state filter than for the 69-state filter as a result of either the difference in
truth models or good filter tuning. Investigation into the individual state plots shown in
Appendix D reveals other problems encountered with the 15-state filter. Large variations
in the true system behavior such as high dynamic maneuvers will test the robustness of
the filter. With a reduced order filter like the 15-state NRS, a single sharp turn or altitude

change is easily handled, but several of these maneuvers caused the filter estimation error




to increase significantly. The flight profile shown in Figure C.1 indicates that problems
may occur between 4800 and 6600 seconds. Analysis of the filter performance verified
that two or three high—g turns in rapid succession provided justification for increasing the
tuning values of certain states in order to enhance tracking. Adaptive tuning techniques
were emploved on states one, two, 12 and 14 with upper and lower process noise values
shown in Table B.10. The upper noise values would be employed following a series of quick
turns and the lower noise values would be used again a few hundred seconds after the last
major turn. A study would have to be done with a variety of flight profiles to determine
the optimal conditions for selecting the upper or lower tuning values. The key issue is
that adaptive tuning is required and was implemented for this simplified filter model as
shown in Figures D.1, D.2, D.12 and D.14. Statistics for the other 11 states are plotted in
appendix D and indicate that all the states were estimable at various degrees of tuning.
State 3 represents the azimuth error and, as anticipated, was diflicult to estimate in this
wander—azimuth system. Aiso, its magnitude is very smali resuiting in liiile or no impaci

on the NRS filter performance so fine tuning was not attempted.

Another goal was to verify the validity of the two-state RRS filter model. Although
temporal averages were not presented by Negast for his 26-state RRS filter, visual exami-
nation of his plots reveals RRS range bias errors of 0.7 to 1.0 {ft in comparison to 6.27 ft of
error with the two-state model. This seemingly large increase had a small effect, on overall
filter performance and the two-state model is deemed to be sufficient for most applications.
The major impact is the reduction in computational loading realized by removing 24 states

from the filter.

4.3 FDI Performance

Both the GLR and chi-square FDI algorithms are discussed with run numbers corre-
lating to Table 3.1. Specific concern is given for missed and false alarms and mcthods for
cnhancing failure detection are discussed. Three types of plots are discussed to illustrate
the performance of the FDI algorithms. First, likelihood function plots show the actual
results of the GLR algorithm. Second, a fail flag routine was written to smooth the GLR

plots based on a detection threshold and a parameter called number_low. This routine
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assumes there is a failure (fail flag=one) until the GLR value falls below the threshold for
a number of successive samples > number_low, resulting in fail flag=0. The consequence
of a large number_low is that fail flag=one for several samples even after the failure has
been removed. Chi-square plots are also generaied for three different window sizes. Tech-
niques employing two fail flag routines with a large and small number_low could help make
quicker decisions in dropping the fail flag. Other decision logic might be used to overcome
problems in detecting certain types of failures, but this thesis focused on a simple scheme

using a single fail flag routine and a single chi—square test for decisions.

4.3.1 Jamming Detection. Three levels of jamming were induced as indicated by
runs one, two and three in Table 3.1. The degradation in the filter performance is di-
rectly related to the amount of jamming noise induced. Selected state plots are shown in
Appendix E to illustrate the effects of heavy jamming on the filter. The filter is able to
reacqiire a good estimation of the states quickly following removal of the jamming noise,
demonstrating the ability of the filter to survive a hostile environment. The residual plots
shown in Figures E.4 and E.5 make it clear that simple residual monitoring would be snf-
ficient to detect the jamming when compared with the baseline residuals in Figures D.16
- D.17. Figure E.6 seems to indicate that the transponders are not significantly affected
by the jamming, but even these minor variations from the baseline in Figure 13.18 will be

detectable by both the GLR and chi-square algorithms.

The results of the GLR test for heavy jamming are shown in Figures E.7 and E.8
and should be compared to the baseline plot in Figure D.21. The five plots in each figure
represent the GLR’s based on the five different matching filters discussed in Section 3.4.2.
As expected, the matching filter assuming a failure in all four satellites provides the best
detection. Figure E.8 shows that with a threshold=120 and a number_low=23, the fail flag
remains up (equal to one) throughout the failure time and missed alarins can be avoided.
The relatively large value for number_low is attributed to the continuous variations in the
residuals resulting from the addition of randoin noise. These variations prevent the GLR

algorithm from reaching a constant level above the noise floor and the large number_low
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causes an excessive 46-second delay, which is excessive, in determining that the jamming

is removed.

Comparison of Figures .21 and E.9 show that the chi-square test was very successful
in detecting the jamming. The best choice for the window size is 15 samples in order to
reduce delays in detection and false alarms which are both apparent at the end of the
failure time. A larger window size would only be necessary if the threshold had to be set

so low (for good detection) that it caused false alarms due to the noise floor.

Similar results were obtained with the medium jamming level, as shown in Figure
I.10. Both the GLR and x algorithms are capable of detecting this level of jamming.
Neither algorithm was successful at consistently detecting the light jamming, as shown in
Figure E.11. The main reason the GLR test had difficulties detecting jamming failures is
that the matching filters are designed to isolate a bias failure and the jamming noise is
quite different from a bias. In contrast, the chi-square test is not dependent on a failure

model and is better suited to detect the variations in the residuals caused by jamming.

4.3.2 Bias Failures. Runs four — six induced bias failures on 5V1 only. Figures
F.1 and F.2 show the degradation in the filter throughout the time frame of the failure
resulting from a bias of 7000 ft being added to the ps2. lorange of SV1. The GPS residuals
shown in Figure F.3 clearly indicates that a failure begins at 2000 sec and falls off at 4000
sec. Although somewhat masked by the scale of the plot, Figure F*.3(b) shows that the
residual values are also large throughout the entire {ailure time. This is easier to see on the
transponder residuals in Figure F.4. An interesting observation is the significant variation
in the transponder residuals even though no failure was induced on their measurements.
Similarly, all the SV residuals are affected as a result of a failure on SV1 only. This
apparent coupling of the measurements is not due to correlation in the real world, but
rather a result caused by the design of the NRS filter. The measuremeni models are
functions of the error states within the filter and with large variations in these estimated
states, all the measurement residuals are affected. This coupling of the measurements
will have a negative effect on {ailure isolation, It is also important to recognize the large

spike occurring at approximately 2300 sec, making the presence of the failure seem obvious.
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This was determined to result from a sharp turn by the aircraft which dithered the system,
indicating that FDI decisions should coincide in time with dithering. The significance of

this dither signal will be discussed later.

A typical GLR plot is shown in Figure ¥.5. The lower plot has been capped off at 200
to allow viewing of the data close to the noise flvor. This noise floor is the result of initial
transients, variations in random noise and changes in the aircraft dynamics. A threshold
could be set for quick detection and to prevent any false alarms (recognized 2s the GLR
value crossing the threshold when no failure is present), but a missed alarm would result.
The approach would be to run the fail flag routine with number_low=two, resulting in a
two-second delay in realizing that the failure is gone, no missed alarms and a detection

time of two seconds. This concept is applied repeatedly throughout the rest of the analysis.

The GLR values for all five matching filters are shown in Figure F.6. Analysis of
this data genevates fail flag results shown in Figure F.7. It is reassuring that the best
results are obtained from the matching filter SV1 which assumes a bias failure in SV1.
There is concern for the false alarms in SV2 and S§V4. One solution would be to raise the
threshold above the noise floor of both matching filters. Although no increase in detection
delay will occur for this failure, later simulations with rarap failures will suffer from raising
the threshold too high and causing delays in detection. A second more desirable method
would be to rely on the chi-square test for detection. Figure F.9 shows favorable chi-
square results in terms of clean and quick detection. A window size of 15 samples will give
fast detection (two seconds), no false alarms and less than 20 sec of delay in dropping the

failure condition.

The next problem is to isolate the failure. The chi—square test provides no indication
of which sensor has failed, but the GLR results are much more useful. The GLR for SV1
has a very large value at 2300 sec, which matches the time of the dither discussed earlier,
and this large spike distinguishes it from the other matching filters (see Figure F.6). A
delay of almost 300 sec would exist, which is unacceptable, but clear identification of the

failed sensor is realized based on a second threshold designed to isolate failures. Further

discussion of this idea will be presented in Chapter V.




The foliow—on goal of generating corrective feedback to the Kalman filter was not
pursued extensively, but a quick look at the MLE of v tor this run provided some interesting
results. Figure F.8 shows two plots of 7 with different vertical scales. The actual failure
size was 7000 ft, ard closc inspection of these plots reveals that & could provide a crude
estimate of the size of the failure during portions of the failure time. The same problem of
poor performance prior to the dither signal is encountered here, along with disturbances in
i> after 3800 sec. The aivcraft dynamics (an altitude change at 3800 sec) are speculated to
have caused this disturbance. Continaed research into using MLE’s for corrective feedback
is encouraged but these values must be checked carefully to ensure they do not adversely

affect the filter performance by providing erroneous feedback.

Similar results were obtained for run five in which the bias was reduced to 700 fi.
A single GLR plot based on SV1 is shown in Ifigure F.10 along with its corresponding
fail flag result. A problem was encountered with missed alarms prior to the dither signal.
Although variations in the threshold value and number_low could overcome this probtlem,
these variations would inhibit detection of other types of failures discussed previously. The
seme solution to use the chi-square test for detection was available and it was determined
that a threshold=>50 would be effective for this failurc (see Figure F.11). Other threshold
values would also be acceptable for this failure, but using a threshold=50 coincided with
other resulvs. Final implementation studies could be accomplished to determine the best

threshold value for all types of failures being considered.

In order to verify the influence of dither signals on the FDI algorithms, run six was
conducted with the failure induced during the highly; dynamic time {rame from 4000 —
6000 sec. Large variations in the GLR and x data correlated to quick turns in the flight
profile, as anticipated. The GLR plot and fail flag based on SV1 arc shown in Figures }*.12
and }.13 with unfavorable resulls occurring with number.low=two. In order to prevent
missed alarms, a number_low=45 was required. Again, o delay occurred in dropping the
failure condition, but the chi-square test provided the necessary alarm with the same
threshold=50 used ea-lier. The same technique of detection through the chi-square test

and isolation via the GLR test would work 1. - his failure.
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The last bias type failure, run eight, assumed that all the SV’s would be spoofed
simultaneously. The state plots in Figures .15 - F.17 show the robustness of the filter to
adapt to this failure. Fewer than ten updates at a two-second sample rate were required
for the filter t» regain accurate tracking of all states. This coincides with the speculation
in Section 3.4.1 that the filter would attribute this failure to an increase in the user clock
bias. Figure F.18 shows that the failare is quickly detected but the adaptive nature of the
EKF prevents a sustained recognition of the failure. Further simulations were conducted
witl. various biases and values as low as 50 ft were easily detected by the GLR algorithm.

This failure was not pursued further, for reasons explained in Section 3.4.1.

4.3.3 Ramp Failures. Runs eight and nine refer to ramp tyne failures of slopes two
and one ft/sec, respectively. The state plots in ¥igures G.1 and G.2 show the gradually
increasing degradation in the filter performance due to this type of spoofing. The residuals
in Figures G.3 and G.4 indicate that failure detection should be possible, and the spikes
in Figure G.3 highiight the effecis of dithering caused by high dynamics,

The GLR algorithm was somewhat successful in detecting the larger ramp failure=2T
with some delay. Figure G.5 illustrates that the all five matching filters will cause missed
and false alarms. A closer look at these results is shown in I'igure G.6 in which the vertical
scale has been reduced. From this plot the matching filiers do not appear to provide quick
or reliable detection. The results of the fail flag routine are shown in Figure G.7 with the
threshold=120 as discussed on page 4-4 and an increase in number_low=10. This increase
in number_low did not adversely effect previous results on other types of failures other than
the expected delay in dropping the faii flag. The twc major problems with these results
are the 356-sec detection delay seen in even the best matching filter, SV1, and the multiple
missed and fulse alarms seen in the other matching filters. A positive result wes the large
spike seen at the time of the dither (2300 sec) that would provide isolation of tne failure

on SVI1,
Again, the chi-square test provided better results for detection with the ramp=:2T.
Figure G.8 shows reliable detection, based on a threshold:=50, beginning 250 scc afler the

failure which occurred at 1500 sec. The 250 -sec delay scems excessive, but the failure




is subtle and the aircraft is spoofed approximately 400 ft at the time of detection. The
chi-square test also dropped the failure more quickly than the GLR test and did not suffer
from the high dynamics between 5000 and 6000 sec.

Results with the ramp=1T are shown in Figures G.9 - G.11. The GLR test was
more reliable for detection, as shown in Figure G.10, when compared to the ramp=2T
results, but this should be attributed to the lack of dynamics during the failure time
frame. The chi-square test was not as successful with this more subtle failure and suffered
the same delay in detecting the failure as did the GLR. The dither signal is again the key
to detection, and isclation was also possible based on the matching filter results. For this
particular simulation with the dither signal occurring 300 sec after the failure, the aircraft
would only be spoofed approximately 150 ft off course prior to detection. Although these
errors due to detection delay might be acceptable for most missions, it points out the need
to conduct a study on optimal input signals for the purpose of enhancing failure detection
and isolation. Mehra discusses a variety of techniques for determining these optimal inputs
including observation of the systems eigenvalues (18, 19). Some quick and simple methods
for system identification are presented by Zarrop and Goodwin based on minimizing a
scalar function of the information matrix (32). Consideration should also be given to
developing failure models for the matching filters designed to detect ramp failures with the

expectation that detection time will decrease.

4.3.4 Fuiled GPS. A complete loss of one pseudorange entering the NRS filter was
induced, and the degraded performance of the filter is shown in Figure H.1. The filter loses
track until 3800 sec after the failure is remnoved, revealing a major liability in the design
of the NRS filter. Figures H.2 and H.3 show the residuals as excessive and divergent,
indicating that the filter is unable to provide a good navigation solution in the absence
of even one pseudorange (PR). One solution to this problem is, after detecting the loss
of the PR causing the filter divergence, move the filter back in time by recalculating the
Kalman filter equations without tne PR measurement input. This would prevent the other

measurements (transponders, baro-altimeter, and Doppler) from being affected by the

coupling discussed earlier, and the filter would remain stable. Once the PR input was




reacquired, this measurement would be processed by the Kalman filter as before. This
idea was not pursued due to time constraints but is mentioned in the recommendations for
future work. The FDI results are skewed by the filter divergence and the GLR algorithm
goes unstable. Delection of this failure is not a major concern since standard GPS receiver
design would recognize the problem and compensate if possible. Finaily, this type of failure
would not be a good tactic for a spoofer, as discussed in Section 3.4.1, but it is comforting

to know that this failure is distinguishable from typical spoofer-induced failures.

4.3.5 Numerical Precision and Modelling. Considerable attention was given to the
numerical precision of the computers running the simulations and the FDI algorithms. In-
vestigation into the matrices passed from MSOFE to Matrix, revealed a potential probiem.
The two rows of the measurement matrix, H, corresponding to states one and two were 10®
larger than many of the other rows, but both computing systems were using double preci-
sion in ail their calculations, so there might not be a problem. The positive performance
of both the Kalman filter within MSOFE and the GLR algorithm in Matrix, indicated
that everything was fine, but it is possible that their performance could be improved by
performing a similarity transformation on the filter model to scale the states more evenly.
Details for this type of transformation are shown by Maybeck (13:p. 28). Time limitations

prevented this work from being completed,

Another factor affecting the performance of the GLR test is mismodelling even though
the NRS filter was shown to exceed specifications in providing a navigation solution. Lhe
dependence of the GLR algorithm on the system dynamics makes it susceptible to inaccu-
racies in madelling, especially when the truth model has 97 states versus the filter model of
only 15 states. A quick study was performed in which both the truth and filter models had
only 15 states to ensure that modelling was not a major factor in the GLR performance.
No noticeable improvement resulted from this study. Detection delays on subtle failures
were not significantly reduced and failure isolation was still not possible prior to the dither
signals. These findings indicated that higher order models for the filter would not improve

FDI performance sufficiently to justify the increase in computational loading required for

a larger filter.




4.4 Summary

This chapter focussed on the results obtained in the research. A brief discussion
of the piecewise—constant nature of the dynamics matrix and concerns about numerical
precision and modelling indicated that these assumptions were valid. Results on filter
performance were very good and a comparison to past research showed that the reduced
order filter model worked well. Analysis of the FDI performance revealed some positive
results but techniques for enhancing this performance would be necessary prior to final

implementation on actual aircraft. Chapter V offers some suggestions to accomplish this

goal and provides some ideas for future research.




V. Conclusions and Recommendations

This chapter provides a brief summary of the results, including a possible method
of implementation for the FDI system. Recommendations for future research are also

presented.

5.1 NRS Filter Performance

The 15-state NKS filter exceeded all operational specifications in its ability to pro-
vide an accurate navigation solution. Although the filter’s performance was degraded as
compared to higher order models used in prior research, the state estimates were reliable
and accurate. Increases in tracking errors were experienced following a series of harsh
maneuvers by the aircraft, prompting the use of adaptive tuning techniques on states one,

two, 12 and 14. A simple technique required these states to have lower and upper process

noise values for adaptation.

The reduced order RRS filter mode] provided adequate estimation for the transpon-
ders while significantly decreasing the number of states in the filter from 26 to two. The
importance of this simplification is the reduction in the load on the computer tasked to
run the Kalman filter algorithm. This accomplishment is magnified by the fact that many
of the small aircraft on-board computers in the Air Force inventory lack the capability to

run a Kalman filter with over 60 states and a two-second update rate.

5.2 FDI Performance

The discretization process used on the state transition matrix assumed time invari-
ance over the two-second sample period and was sufficient to generate accurate inputs
for the GLR algorithm. This resulted from the combination of the two-second sampling
period and the 8th order Padé approximation for the matrix exponeutial function. Longer
sample periods or cruder approximation techniques might cause the discretization process

to be degraded, resulting in improper modelling within the GLR algorithm.

A combination of the GLR and chi-square algerithms provided adequate detection

and isolation for most of the failures considered. Heavy and medium jamming levels were




reliably detected but light jamming was not noticable above the noise floor. Althougl
jamming detection using the FDI algorithms was desired, many other forms of detection
are available using current electronic warfare techniques. Even more imporiant is the
distinction between the outputs of the GLR matching filters when compared to each other
and also when compared to other types of failures such as spoofing. It is necessary for the
FDI system to recognize the type of failure prior to generating any corrective feedback into

the NRS filter and to alarm the aircraft pilot properly of the hostile environment.

The FDI algorithms performed well for both types of spoofing. Thresholds were
found empirically with substantial tradeoffs required to prevent false and missed alarms.
All bias values were easily detected and isolated using a combination of the chi-square
test for detection and the GLR test for isolation. The chi-square test minimized detection
delay to two sec, eliminated false alarms and minimized the delay in dropping the failure
condition to 20 sec. If the I'DI algorithms were attempting to detect failures in a flight
cuitirol system 1ather than a navigation system, then these delays weuid be unacceptable,
but for the scenario described in Chapter I, these delays should not cause major problems
in completing mission objectives. Ramp failures presented additional problems for the
chi-square test. The gradual changes in the residuals caused delays in detection with
larger ramp values having delays of about four minutes and small ramp values completely
avoiding detection prior to dithering the filter. These resulis would not be acceptable for

final implementation.

Two important aspects must be addressed for implementation of a reliable FDI sys-
tem. First, a two-level scheme should be used in which the chi-square test is utilized for
detection and the GLR test provides isolation. It should be realized that both algorithms
use the inverse of the residual covariance, A(t;), in their calculations, so the chi-square
test does not generate much computational overhead assuming the GLR test is already
being conducted. The GLR algorithm does require a significant number of computations
and may interfere with chi-square calculations done by an on-board computer, but the

two-level design allows for priority to be given to the chi-square test for detection while

the GLR test can run on a lower priority for isolation. A study on this idea could provide




optimal performance of the overall FDI scheme. Neither algorithm could independently

outperform this two-level scheme in terms of detection and isolation.

The second major concern for implementation is whether purposely dithering the
system could enhance FDI performance. Results clearly indicate that harsh aircraft ma-
neuvers enhanced isolation for the GLR test on all failures and detection for the chi-square
test on subtle or small failures. Maybeck discusses the use of probing with the intention
that it “purposely excite certain modes of the system in order to aid the identification of
uncertain parameters” (15:p. 229). One tactic discussed is the use of “S—turns” performed
by the pilot and a simple variation in the flight profile would reveal the usefulness of this
idea. Stratton, Menke and Hanlon looked into continuous and periodic dithering signals

induced through control inputs (6, 20, 28). This would change Equation {2.1) to
(1) = £x(t), Lu(t)] + GO)w(?) (5.1)

where u(t) = control input. A study could be conducted on optimal control inputs for this
navigation system to determine the best choices for this method. Preliminary indications
are that rather large dither signals are required for this system so pilot~induced dithers
would probably work better than automatically induced subliminal probes or automatically

induced nonsubliminal probes that would bour.ce around the aircraft and its crew.

Comparison of a 15-state filter model against a 15-state truth model showed that
higher order filter models would not significantly enhance FDI performance. Numerical
precision was not considered to cause a major problem in the performance of the Xalman

filter or the FDI algorithm, although rescaling the states should still be considered.

5.2.1 Corrective Feedback. Although tinie constraints prevented research into feed-
back techniques designed to correct for failures, some observations can be made. As men-
tioned earlier, adaptive tuning techniques in which Q was increased were employed to
ensure adequate filter performance under normal conditions. This concept could be ex-
tended to enhance filter performance once a failure was detected. The FDI system is 1 ow

confronted with a third task beyond that of detection and isolation. Assuming a bias failure

has been induced, the FDI systemn must estimate the size of the bias in order to determine




the amount of adaptive feedback (represented by changes in Q) needed to compensate for
this failure. If the estimate is {00 large, the filter may become too conservatively tuned and
performance will degrade. If the estimate is too small, insufficient tuning may occur and
the filter will not be able to track the states closely. Additional problems may result from
the filter becoming accustomed to the errors induced by the failure. If the filter adapts
to the bias, it may become less aware of minor changes in the bias and might lose the
ability to determine when the failure has been removed. Since the pilot would be alarmed
of the initial failure, cperator-induced dither signals could be used to help improve future

detection and the overall filter performance would be improved

Another method of compensation is to estimate the size of the failure and remove it
from the incoming measurement. Assume the failure appears as a bias, b, on the measure-

ment equation taken from Equation (2.11).
6z, (t:) = H[t; %0 (8)16x,(8) + v(t) + & (5.2)

If the GLR algorithm were able to find ¥ accurately which is the MLE of the size of the
failure, then simply subtracting # from Equation (5.2) would eliminate the failure in the
system and the output of the Kalman filter would not be degraded. Cther algorithms such
as MMAE could also use this idea.

5.3 Recommendations

A brief list of recommendations for future research is presented, with many of the

detaus concerning these items presented earlier.

¢ lipaiize the similarity transform to rescale the states and compare results to those

achieved without rescaling {or both the Kalman filter and FDI algorithms.

® Verify doininance of the diagonal terms in tlie residual covariance matrix, A(¢;), over

the non-diagonal terms of this matrix. See assumption 7.

oy
&




Perform a study on optimal inputs intended to dither the system. Improvements
should be noted in the NRS filter performance, but the main goal would be to

decrease delays in detection and isolation of failures.

Pursue techniques for feeding back corrective signals such as adaptive tuning or
measurement correction discussed previously. Careful invesiigation of errors in the

state estimates should indicate the success of these methods.

Consider changing the failure models for the matching filters to look for ramp failures
rather than biases. A scheme with 10 matching filters (five for biases AND five for
ramps) should be compared against those with only five matching filters (five for

biases OR five for ramps).

Look intu theoretical techniques for establishing thresholds rather than finding them

empirically.

Change the GLR algorithm listed in Appendix I to allow for various failure times.
This implies that # could take on any value within the window, resulting in an MLE
of 6 and a GLR as a function of t; and §. This GLR should better identify the time of
the failure and may outperform the simplified GLR algorithm. Consideration would
have to be given to increased detection time caused by the increased computations

necessary to implement this new GLR test.

Look into MMAE techniques as a replacement for the FDI scheme. MMAE could
be used in conjunciion wiil many of the recominendations listed above and the chi

square test should always be considered as an additional source of information, The
most significant task associated with this idea is developing the software capable of
performing the simulations. MSOFE is not currentiy structured to handle the bank
of Kalman filters associated with an MMALK scheme. The alternative would be to
adopt another software package designed to run multiple Kalman filters. The major

problem would be to convert the models and particularly the overhead associated with

generating the measurements for the GPS and RRS portions of the NRS system. In

either case, a head—to-head comparisen of the results achieved by the MMAFE method



and those achieved in this thesis should provide insights into the relative strengths

and weaknesses of the GLR and MMAE approaches.
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Appendix A. Error Model State Definitions

Tabular listings of the truth and filter models are presented. Tables A.1 and A.2
show the 41-state INS truth model with the LN-93 state numbers given for reference to
the Litton technical report on the INS (9). Tables A.3 and A.4 list the RRS and GPS
states respectively and Table A.5 lists only the states used in the NRS filter model.




Table A.1. 41-State INS System Model: First 20 States

State State | Definition LN-93
Number | Symbol | State

1 68, X-component of vector angle from true to computer frame 1

2 86, Y-component of vector angle from true to computer frame 2

3 60, Z-component of vector angle from true to computer frame 3

4 o X-component of vector angle from true te platform frame 4

5 @y Y-component of vector angle from true to platform frame 5

6 @, Z-component of vector angle from true to platform frame 6

7 §V, X-component of error in computed velocity 7

8 oV, Y-component of error in computed velocity 8

9 8V, Z-component of error in computed velocity 9

10 bh Error in vehicle altitude above reference ellipsoid 10

11 bhp Total baro-altimeter correlated error 23

16 ohy, Error in lagged inertial altitude 11

17 653 Error in vertical channel aiding state 12

18 08, Error in vertical channel aiding state 13

19 V.. | X-component of accelerometer and 17
velecity quantizer correlated noise

20 Vy. Y-component of accelerometer and 18
velocity quaniizer correiaied noise

21 V.. | Z-component of accelerometer and 19
velocity quantizer correlated noise

22 69, X-component of gravity vector errors 20

23 g, Y-component of gravity vector errors 21 0

24 ég, Z-component of gravity vector errors 22 ]]




Table A.2. 41-State INS System Model: Second 21 States

State State | Definition 1,N-93
Number | Symbol State

25 b, X-component of gyro drift rate repeatability 30

26 b, Y-component of gyro drift rate repeatability 31

21 | b, Z-component of gyro drift rate repeatability 32

28 S, X-component of gyro scale factor error 33

29 S, | Y-component of gyro scale factor error 34

30 S, Z-component of gyro scale factor error 35

31 Vs, X-component of accelerometer bias repeatability 48

32 Vi, | Y-component of accelerometer bias repeatability 49

22 s, Z-component of accelerometer bias repeatability 50

34 Sa. X-component of accelerometer and velocity 51
quantizer scale factor error

35 Sa, Y-component of accelerometer and velocity 52
quantizer scale factor error

36 Sa, Z-compouent of accelerometer and velocity 53
quantizer scale factor error

37 Sqa. | X-component of accelerometer and velocity 54
quantizer scale factor asymmetry

38 5ga, | Y-compement of accelerareter and velocity 55
quaiitizer scale factor asymmetry

39 S5ga, | Z-component of accelerometer and velocity 56
quantizer scale factor asymmetry

40 1 X accelerometer misalignment about Z-axis 66

41 75 Y accelerometer misalignment about 7-axis 67

42 13 7. accelerometer misalignment about Y-axis 68

43 0y X-acceleromerer misalignment about Y-axis 69

44 o Y-accelerometer misalignment about X-axis 69

45 U3 Z-accelerometer misalignment about X-axis 69 |

A-3




Table A.3. 26-State RRS System Model

State State | Definition
Number | Symbol
12 6 Ry Range error due to equipment bias
13 Sy Velucity error due to equipment bias
- ™y == g

46 &6Fp;, | Trausponder 1 x-component of position error
47 6Py, | Transpoader 1 y-component of position error
48 APr., | Transponder 1 z-component of position error
49 éRry, | Transponder 1 range error due to atm propagation
50 6Prs_ | Trauzponder 2 x-component of pasition error
51 6Pry | Transponder Z y-component of position error
52 dPpq, | Transponder 2 s-component of position error

| 53 dRrs. ! Transponder 2 range error dve to atm propagation
54 0 Ppn, ] Transponder 3 x-component of position error
55 0 Pyrs, | Transponder 3 y-component of position ertor
56 0Pps, | Trancponder 3 z-component of position error
57 6ltr;, | Transponder 3 range error due to atm propagstion
58 8§ Pry, | Trensponder 4 x-component cf position error
59 6Prq, | Transponder 4 y-component, of position error
60 &6 Pps, | Transpouder 4 z-component of positiou error
61 51,4, | Tronsponder 4 range error duee 1o atm propagation
62 6 Pry, | Trausponder 5 x-component of position error
62 6Prs, | Transponder 5 y-component of position error
64 §Ppy. | Transponder 5 z-zomponent of position error
65 dRy;, | Trapspouder b range error due to atm propagation
66 0Ppg, | Transpender € x-cowponent of position ciror
67 0, | Transpouder 6 y- component of position error
68 6Pps, | Transponder 6 z-componest of position error
6Y S Rye, | Lransponder 6 range error due to atm propagation




Table A.4

. 30-State GPS System Model

| bz,

State State | Definition
Number | Symbol

14 R, | User clock bias
15 6Dy, | User clock drift
70 OR 150, | SV 1 code loop error
71 6R.rop, | SV 1 tropospheric error
72 0 Rion, | SV 1 ionospheric errcr
73 6Rc,k_“L SV 1 clock error
74 0z, SV 1 x-component of position error
75 8Ysy, | SV 1 y-component of position error
76 024y, SV 1 zycomponent of position exror

I 6Reloops | SV 2 code loop error
TS 0 R rop, SV 2 ‘tfgpo'sph‘e‘r{a ciror
79 0R,;,,, | SV 2 ionospheric error
80 6 Ry, | SV 2 clock error
81 0%y, SV 2 x-component of position error
82 Yy, SV 2 y-component of position error
83 0z,y, | SV 2 z-component of position error
84 O R 1o0p, | SV 3 code loop error
85 0B .p, | SV 3 tropospheric error
86 S R0, | SV 3 ionospheric error
87 8By, | 5V 3 clock error
88 2., | SV 3 x-component of position error
89 0w, | SV 3 y-component of poéition error
90 0z,,, SV 3 z-component of position error
9] 6 R ioop, | SV 4 code loop error
92 0By 0p, | SV 4 tropospheric error
92 §Rion, | SV 4 ionospheric error
94 6, | SV 4 clock error
95 bz,,, | SV 4 x-comporent of position ervor
96 0Y,u, | SV 4 y-component of position error N
97 SV 4 z-component of position error




Table A.5. 15-State Reduced-Order Filter Model

[ State State | Definition
Number | Symbol

1 60, X-component of vector angle from true to computér—frame
2 00, Y-component of vector angle from true to computer frame
3 66, Z-component of vector angle from true to computer frame
4 b X-component of vector angie from true to platform frame

| 5 o Y-component of vector angle from trve to platform frame
6 @, Z-component of vector angle from true to platform frame
T &V, X-compenent of error in compnted velocity
8 T8V, Y-component of error in computed velocity
S §V, Z-component of error in computed velocity
10 éh Error in vehicle altitude above reference ellipsoid
11 bhg Total baro-altimeter correlated error
12 oR, Range error due to equipment bias |
13 & Veloeity error due to cgquipment bias
14 b6z, | User clock bias
15 bz yk,, | User clock drift




Appendix B. Dynamics Matrices and Noisc Values

B.1 Definition of Dynamics Matrices

The LN-93 error—state dynamics matrix F is defined in Chapter III as a combination
of submatrices. The NON-ZERO elements of these submatrices are presented in the tables

which follow. All the variables shown in the following tables are defined in the LN-93

technical report along with their uniws (9).




Table B.1.

Elements of the Dynamics Submatrix ¥y,

[[Element ] Term g ,mentJ Term ‘H

(1,3) —Py (1,8) —Cry
(2,3) P (2,7) CRX
(371) Ly (3,2) Pz
(472) ‘Qz (4s3) ﬂ&'
(@5) ™ (45) =
(4,8) —-CRry (5,1) Q,
(5,3) -, (5,4) —Wwyy,
(5,6) Wit (5,7) Crx
(671) | "Qy (sz) 2,
(6,4) Wi, (6,5) —wiy,
(7,1) —2V,Q, - 2V, Q, (7,2) 2V, Q. I
(7.3) 2V,9Q, (7,5) —A, i
(7,6) A, (7,7) ~V.Crx
(7,8) 20, (7,9) —py ~ 28,
(8,1) 2V, Q, {8,2) -2V.Q,. — 2V, Q.
(8,3) 2,9, (8,4) A,
(8,6) —Az (3,79 202,
(8,8) -V.Cry (8,9) p: + 29,
(9,1) 2V.12, (9,2) 2V, 9,
(9,3) -2V, -2V, 0, (9,4) —A, |
(9,5) A (9,7) py + 20y + Vo.Chx |
(98) | =ps =22, +V,Cry | (9,10) 24./a

(9 16) —ka (9,17) -1

(9 18) ky {10.9) 1

"(16,16) —k1 (16,18) ky—1

(15,10} 1 (16,16) =1

(17,16) ks (17,]_8) “ks B

(18,10) kq (18,16) —kiq

(18,18) Ky —1

Table B.2. Flements of the Dynamics Submatrix ¥y,

u Element ] Term || Flement L lum ﬂ
(7.19) C11 (7 20) Crp | (721) | Tia
(7.22) 1 (819) | Cy I (8:20) | Cua
(821) 1 Cu (8,22) 1 919) | Ci
(9,20 | Ca (9,21) | Ca || (9,24) | 1
(9,11) ks (011) | k|| (17,01 | <ks
(18,11) | k4/600




»

Table B.3. Elements of the Dynamics Submatrix F,,

“ Element | Term 1| Element | Term “ Element ] Teim “
| (4,25) Cn (4,26) Ci, (427) | Cis
7 (4,28) [Criwn, || (4,29) | Crawin, | (4,30) | Crawin,

(5,25) Ca (5,26) | Ca (5.27) | Ca |
(5,28) me.-b, (5,29) szw,-bL (5,30) me‘-b,
(6,25) Can (6,26) Caz (6,27) Cas

(6,28) | Caiwis, (6,29) | Cspwip, (6,30) | Caswip,

Table B.4. Flements of the Dynamics Submatrix ¥y,

[ Blement | Term || Element | Term [ Ylement | Term ||
(7,31) Cyy (7,32 C, | (7,23) i3

(7,34) | C,, 42 {7,35) | CiA? (7,36) | CiaAF
(737) | CulAZl | (7,38) | ColAl[ | (7,39) | CralAZ]
(7,40) | CuA] || (741) [ -CnAP ] (742) 1 C4P
(7,43) | C3AF (8,31) Cn (8,32) Coy

(8,33) Cas , (8,34) | CpnAZ (8,35) | CpA?
(8,36) CzsAf' (8,37) | Cn|A7 (8,38) | Ca|4p
(8,33) | CoslAB| Hl (8,40) ' AP (8,41) | —~Cp AP
(8,42) | CysA? (8,43) | CyyAF (9,31) Ca

(9,32) Cas (9,33) Cas (9,34) | Cy AT
(9,35) | CypAP {(9,36) | CaaAl" || (9,37) | Ca|AZ]
(9,38) | CoolAF| || (939) | CaglAZ} || (9,440) | Cy 4?2
(9,41) | ~Cs AT || (9,42) | Cyd¥ (9,443) | CyA) |




Table B.5. Elements of the Dynamics Submatrix ¥,

| Flement | Term || Element | Term || Element | Term ||
(19719) “IBV,C (20,20) ‘ﬁvyc (2]'721) —,@v,c
(22,22) '—ﬁ{g: (23,23) _ﬁéb (24,24) —-ﬂ,g;i‘
(11711) "ﬂ&hc

The NON-ZERO elements of the dynamics matrix representing the the GPS and

RRS are shown in the following table.

Table B.6. Elements of the Dynamics Matrix for GPS & RRS

(49,49) | -1/300 ft*/sec || (53,53) | -1/300 ft?/sec || (57,57) | -1/300 ft*/sec
(61,61) | -1/300 f1%/sec || (65,65) | -1/300 ft?/sec || (69,69) | -1/300 fi%/sec
(70,70} | -1 ft?/sec (71,71) | -1/500 ft*/sec || (72,72) | -1/1500 ft*/sec
(77,77) -1 ft*/sec (78,78) | -1/500 ft?/sec || (79,79) | -1/1500 f¢?/sec
U(84,84) | -1 ft*/sec || (85,85) | -1/500 ft?/sec || (86,86) | -1/1500 fi2/sec
91,91) | -1 ft?/sec || (92,92) | -1/500 f*/sec || (93,93) | -1/1500 fi? [sec
(14,15 1 fi¥]sec

B.2  Elements of the Process Noise and Measurement Noise Matrices

The process noise strength matrix Q associated with the INS truth model is also
partitioned into submatrices as described in Chapter lIl. The NON-ZXRO clements of
these submatrices are shown in Tables B.7 and B.8. Note that the o? terms mn these
two tables are variable names only as defined in the Litton technical report zud do not
represent variance terms typically associated with ¢?. The process noise for the GPS and

RRS portions of the truth model are listed in Table B.9. Finally, the process noise values

used in the filter and the measurement noise values R are presented in Tables B.i0 and

B.11.




Table B.7. Elements of Truth Model Process Noise Submatrix Q;;

H Element | Term ]LElemcnﬂ Term ﬂ

(44) | o4 [ 55) z
(6’6) 1275, (7’7) 3.4,
(8,8) ZA" (9,9) A

Table B.8. Elements of Truth Model Process Noise Submatrix Q.

[ Element | Term | Element | Term || Element | Term ||
(A1,11) | 2805, || (19,19) | 26,05, || (20,20) | 2B, 05
(21,21) | 2Bv.. 0. || (22.22) | 2By, 0%, | (23,23) | 2Bs,, 0%,
(24,24) | 285y, 9%,

Table B.9. Elements of Truth Model Process Noise for GPS & RRS

(49,49) | 6.667x10713 f£*[sec || (53,53) | 6.667x107° fi?/sec || (57,57) | 6.667x1071* ft*/sec
1 (61,61) | 6.667x107 13 f12/sec || (65,65) | 6.667x10-13 f1*/sec || (69,69) | 6.667x10~1° f12/sec
(70,70) 05 ft¥]sec (71,71) 0.004 f1?/see (72,72) 0.004 ft%/sec
(77,77) 0.5 ft2/sec (78,78) 0.004 f1*/sec (79,79) 0.004 ft%/sec
(84,84) 0.5 f1?/sec (85,85) 0.004 ft?/sec (86,86) 0.004 ft?/sec
(91,91) 0.5 ft?/sec (92,92) | 0.004 ft?[sec (93,93) 0.004 ft*]sec
Table B.10. Filter Process Noise Q
W Elemenﬂ Term ﬂ Element | Term j]
(1,1) | 0.1x10713 & 1.0x107 "% rad?/sec || (2,2) | 0.58x1071° & 1.6x107!? rad?/sec
(3,3) 0.0 rad?/sec (4,4) 100 rad®/sec
(5,5) 500 rad?/sec 6 | 45 rad?/sec
{7,7) 800 ft?/sec’ (8,8) 400 ft*[sec?
il (9,9) 8000 fi%/sec? (10,10 20 ft*/scc?
(11,11} 400 ft?/sect (12,12) 17 & 40 f1*/sec?
73313) 0.0 ft*/sec® (14,14) 14 & 46 ft?]sec?
[(0535) | 05x107™ fi7]sec?

Table B.11. Truth and Fiiter Measurement Noises R

q Meoasurement l Truih Noise | ]—F‘ilt(er Noisc;,_‘[]
g_ﬁa\.ro Altimeta: | 2500 fi2 2500 ft*
Doppler 0.02 ft*/scc? | 0.02 ft¥]sec?
Transponders | 4 jr“?”T W0 fi2
T




Appendix C. Misccllaneous Plots
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Figure C.1. Two Hour Flight Profile
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Appendix D.  Baseline Filter Plots

All the state plots contained in this appendix contain five traces. The innermost
trace (- ~ ~) on each data plot is the mear: error time history for the applicable state.
Mean Error is defined as being the difference between the filter’s estimate of the state and
the true state, averaged over the number of Monte Carlo runs perforined. The equation

describing this relationship is defined by (13, 27):

N N
Mo(t) = 37 o es(t) = 37 20 AR5 (t) = Kuruey 1)} (D)

where %;(t;) is the filter-computed estimate of a given state and Xieye,(t) is the truth
model value of the same state, at time t;, for run j, and N is the number of time historics

in the simulation (10 in this thesis).

In addition to the center trace, iwo more puirs of traces are plotted and labeled
Mean+-Sigma. The first pair (represented by ---} is symmetrically displaced about the
mean ard as a result follows the “undulations” of the Mc(,..). The locus of these traces is
calculated from M,(t;) £ \/P.(t;) , where P.(%;) is the true e1.  variance at time t;. The

tsue standard deviation is calculated from (13, 27V

— v X N
O'g_n_;e(tg') = \v/;)e(ti) = | YRl l ’. —-T—Mpz(tl) D‘2)

where N is the number of runs in the Monte Carlo simulation (10 in this thesis), and M2(t;)
is the square of the mean of u given state at each time of interest (such as measurement

times).

The last pair of traces (

) represent the filter computed % oy, values for the
same states and are symmetrically displaced about zero because the filter “helieves” that
it is producing zero-mean errors (15, 27). These quantities are propagated and updated in
the MSOFE (22, 27) software using the covariance propagation equation shown in Chapter

TI. These traces represent the filter’s estimate of its own error.

D-1




Similar statistics are computed for the measurement residuals with the residual co-
variance defined in Chapter II and labeled Filter+-Sigma. ¥inally, bascliue plots for the

GLR and chi-square algorithms are shown, with three window sizes presented for the

chi-squarc test.
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Appendix F. Jammning Failure Plots

Selected state and residual plots are shown to illustrate the performance of the NRS
filter under heavy jamming conditions. GLR and CIHI plots are presented for all three

jamming levels.
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Appendix F. Bias Failure Plots

Selected state and residual plots are shown to illustrate the performance of the NRS
filter with bias failures induced on the SV’s. Some of the statistics are masked by the large
vertical scale cf the plots, but this allows the full range of the mean error and residual
values to be seen, which best characterizes the filter performance. A variety of GLR and
x plots illustrate the FDI performance for all bias failures considered. Several plots are

shown twice with two different vertical scales to reveal significant details that are lost in

other plots.
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Appendix G. Ramp Failure Plots

Sclected state and residual plots are shown to illustrate the performance of the NRS
filter with ramp failures induced on the SV’s. Some of the statistics are masked by the
Jarge vertical scale of the plots, but this allows the full range of the mean error and residual
values to be seen, which best characterizes the filter performance. A variety of GLR and
x plote illustrate the FDI performance for all ramp failures considered. Several plots are

shown twice with two different vertical scales Lo reveal significant details that are lost in

other plots.
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Appendix H. GPS Failure Plots

Selected state and residual plots are shown to illustrate the complete degradation of

the NRS filter with the loss of GPS signals.
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Appendix 1. Software

The routines shown in this appendix were run on Matrix, (8) with the data provided
by MSOFE (22) and stored in Matrix, compatible data files. The theory presented in

Chapter Il is implemented with documentation to ascist the reader,

// This is a MatrixX macrc that performs a GLR test with

// n =1 for all t. The routine "lout" is called to get the

// the time-varying elements of F, H, gain, cov, & gamma stored

// in data files fout, hout, %2-k11, and uout.

// The ¥ matrix is discretized and windowing is applied.

// Must of the variable nar2s apply to the theory presented

// in the thesis in Chapter II for the GLR test. Unly 10 meapurements
/7 ar: included: SV1~4 and TR1-6 with the baro anc velocity aiding
// left out as discussed in the thesis. NOTE: This routine takes

// betgeen 30-60 minrtes to ryun depending on the machine...be patient
//

glr="exec(’glx’)"; //set up macro

lout="exec(’lout’)"; //set up macro

//load data - HOTC: these are commented out as they loaded in already
//load ’uout.mxd’,load ’hout.mxd’,load 'fout.mxd’,...

//load ’k2out.mxd’,load ’kivut.:uxd’,load ’kdout.mxd’,...

//1lcad ’kS5cut.mxd’,load ’k6out.mxd’,load ’k7fout.mxd’,...

//1load ’kBout.mxd’,load ’k%out.mxd’,load ’ki0out.mxd’,load ’killout.mxd’;
//load ’simtru.mxd’;

1/

//initialize constant variables

//

ns8=15; //nuaher of states

simtime=3599; //length of simulation=3599

dt=2; //eample rate

ws=10; //set window size

d={1;0;0;0;0;0;C;0;0;9]; //failure matrix

n=1; //failure step fanction, assumed=1 for all time
yola=[0;0;0;0;0:0;0;0;0;0;0;0;6;0;0]: //starts at 0

b=0%ones(16); //dviving terms matrix, not really used=0, but

// needed for the discretize command

I-1




dd=0*onea(10,15); //D matrix not really used=0, but needed

// tor the discretize command

h»O*ones (10,15); //set up B-matrix ;

f=0%ones(15,16); //set up F-matrix

cov=0%cnes(10,10); //set up residual Cov matrix

/"

//constant R values

//

h(1:4,14)=[-1;-1;-1;-1];

h(5:10,12)=[~1;-1;-1;-1;~1;-1];

1/

//constant F values

/!

£(9,10)=3.0668051533128074D-6;

£(10,9)=1;

£(14,15)=1;

1(11;113=-1/600;

£(9,11)=,0004;

£(10,11)=.03;

3=0;.., f/s for summing

¢=0;... f/c for summing

//

//Ipitialize the window

//

for k=2:¥8-1,...
kt=k,... //set index value for lout routire
Jloutl;... //get F,H,gain(K),cov, & gamna
ss=[f b;h dd];... //form state space matrix
sid=discretize(ss,ns,dt, ’ztransform’);... //discretize the model
[phi,bd,cd]=split(sd,ns);... //split into individual matrices
covi=inv{cov);... //get residual cov-inverse
ynew=phi*(eye(15)-gainsh)*yold-phi*gain*d+*n;... //get y
yold=ynev;... //setore recursive value
w=h¥ynew+d;... //get m
sterm(k)=n’scovikxgamma;... //find sunmmation term for s
s=ststern(k);... //add sterms to get s

ctermn(k)=m’*covism; ... //find summation term for c
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c=c+cterm(k) ;... //add cterms %o get c
1(k)=(a/c)*s;... //MLE 1{k)

end,

f

//Slide the window

//

for k=us:simtime,...
kt=k;... //get nev value in window
Jiout[;... //get F,l,gain(K),cov, & gamma
se=[f b;h dd};... //form state space matrix
sd=discretize(ss,ns,dt,’ztransform’);... //discretize the model
[phi,bd,cd]l=split(ed,ns);... //split into individual matrices
covi=inv{cov); ... //get residual cov-inverse
ynew=ph:#*(eye(15)-gain*h)*yold-phi*gain*d*n;... //get y
yold=ynev;... //keep recursive value
m=h+ynevwt+d;... //get m
sterm(k)=m’*covi*gamua;... //find summation term for s
s=p+asterm(k)-stern(k-vs+1);... //add sterms to get s
cterm(k)=m’*covi*m; ... //find summation term for c
c=c+ctern (k) ~cterm(k-wa+1);... //add cterms to get c
1(k)=(s/c)*s;... //MLE 1(X)

end,

//

//Plot results

//

for i=1:simtime,...

time(i)=t(2*i,1);... //keep time variable only from simtru.mxd data

end,

plot(time,l, ’repo7/xlabel/Time (sec)/ylabel/MLE, L(k)/uppex’)

\\doorbell //indicates end of program
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//Routine "lout": Lecad in run data for post processing...
//called by macro "glr"...
/...
//Vaciable H, F, & K values...
...
h(1,1)=hout(kt,1);... //H-Matrix
h(1,2)whout (kt,2);...
h(1,10)=hout (kt,3);..
h(2,1)=hout(kt.4);...
h{2,2)=hout(kt,5);...
h{2,10)=hout(kt,6);...
h(3, 1)=hout{kt,7);...
h(3,2)=hout:(kt,8);...
h(3,10)=hout (kt,9);...
h(4,1)=hout(kt,10);...
h(4,2)=hout(kt,11);...
h(4,10)=hout (kt,12);...
h(5,1)=hout (kt,13);...
h(5,2)=hout (kt,14);...
h(5,10)=hout (kt.15);...
h(6,1)=hout(kt,16);..
h(€,2)=hout (kt,17);...
h(6,10)=hout(ki,18);...
h(7,1)=hout(kt,19);..
h(7,2)=hout(k%,29);...
h(7,10)=hout (kt,21);... X
h(8,1)=hout(kt,22);...
h(8,2)=hout (kt,23);. ..
h(8,10)~hout (kt,24); ... &
h(9,1)=hout (kt,25);...
h(9,2)=hout (xt,26);...
h(3,10)=hout (kt,27);...
h(10,1)=hout (kt,28);... A
h(10,2)=hout (kt,29);... o
h(10,10)=hout (xt,30);... .
£(1,3)sfout(kt,1);. .. //¥-Matrix =
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£(1,8)=fout(kt,2);..
£(2,3)=fout(kt,3);...
£(2,7)=fout(kt,4);...
£(3,1)=fout(kt,5);...
£(3,2)=fout(kt,6);...
£(4,2)=tout (kt,7);...
£(4,3)=fout(kt,8);.
£(4,5)=fout(kt,9);...
£(4,6)=fout(kt,10);...
£(4,8)=fout (kt,11);...
£(5,)=fout(kt,12);...
£(5,3)=fout (kt,13);..
£(6,4)=fout(kt,14);...
£(5,6)=fout(kt,15);...
£(5,7)=fout(kt,16);..
£(6,1)=fout (kt,17);.. i
£(6,2)=fout (kt,18) ;... i
£(6,4)=fout (kt,19);..
£(6,5)=fout(kt,20);...
£(7,1)=fout(kt,21);...
247, D afoni(kt,22) ;...
£(7,3=fout(kt,23);...
£(7,8)=fout (k%,24) 5. ..

£(7,6)=xout(kt,26);...
£(7,7)=fout (kt,26) ;...
£(7,8)=fout (kt,27};...
£(7,9)=fout(k%,28);...
£(8,1)~fout (kt,29);...
£(8,2)=fout (kt,30);..

£(3,3)afout (at,31);..

£(8,4)=fout(kt,32);...
£(8,6)=fout(kt,33);...
£(8,T)=fout(kt,34);..

#{8,8)=fout(ki,28);...
£(8,9)=fout{kt,36);...
£{%,)=fout (kt,37);...
1£(9,2)=fout(kt,38);...
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£(9,3)=fout(kt,39);.
£(9,4)=fout (kt,40);...
£(9,5)=fout(kt,41);.
£(9,7)=fout(ki,42);..
£(9,8)=fout(kt,43);...
gaint(1,1:15)=k2(kt,:);... //Gain transposed
gaint(2,1:15)=k3(kt,:);...
gaint(3,1:1E)=k4(kt,:);...
gaint(4,1:15)=k5(kt,:);...
gaint(5,1:15)=k6(kt,:);...
gaint(6,1:15)=k7(kt,:);...
gaint(7,1:16)=k8(kt,:);...
gaint(8,1:15)=k9(kt,:);...
gaint(9,1:16)=k10(xt,:);...
gaint(10,1:18)=k11(kt,:);...
gammat (1:10)=u(kt,[3 5 7 9 11 13 15 17 19 211);... //Rasiduals
gamma=gammat’;... //transpose
gain=gaiut’;... //transpose
for j=1:10,...
cov(j,j)=sqrt(u(kt,2%j));... //Residual Cov diagonal terms

end,...

e " ok AR O T E R P
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//MatrixX routine to generate a chi-squared plot.

// Data files used are uout.mxd and simtru.mxd.

//

c="exec(’chi’)"; // set up macro

clear r v vv vi 1 n 1 1w // clear values from last run
//initialize values

k=0;

nm=10; //number of measurements

/7

// Separate uout into r and v vectors. Where r represents
// the residuals, and v represents the residual covariances.
1/

Ior i=3:2:22,...

k=k+1;...
r(:,K=u(:,i);...
v(:,k)=ul:,i+1);...

end

//

// Find xVr scalar for all time

//

for j=2:3599,.., //vwindovw of time

vv=0xonea(mm);... //initialize residual cov matrix

for m=1:nm,...

vv(m,m)=v(j,m);... //put diagonal terms in a square matrix

eind, ...

vi=inv(vv);... //Get vv-inverse
rvr(j)=r(j,:)*vi*r(j,:)’;... //Gat summation term
time(j)=t(2+j,1);...//exiract time variable from simtru.mxd
end

//

// Find chi(k) summation

//
chi{1)=rvr(1);
for k=2:3599, ...

chi(k)=chi(k-1)+rvr(k);...

eni




n=15; //size of window
// intialize first window values
for j=1:n-1,...
v1(j)=chi(j);...
end
// compute remaining values over time by adding new
// values into the window and subtracting old values out
// of the window.
for j=n:3599,...
1v1(j)=chi(j)~chi(j-n+1};..
end
// clean up first part of plot if transients are tco large
for j=1:300,...
1wi(§)=1w1(300);..

end

n=i5; /fsize of window
// intialize first window values
for j=i:n-1,...
1e3(j)=chi{(j);...
end
// compute remaining values over time by adding new
// values into the window and subiracting old v..lues out

// of the window.

1w3(j)=chi(j)—chi(j-n+1);...

end

// clean up first part of plot if transients are too large
for j=1:300,.

1v3(i)=1w3(300);...

end

n=75; //size of window
// intialize first window values £

for j=1:n-1,...

185(j)=chi(j);...




end
// compute remaining values over time by adding new
// values into the window and subtracting old values out
// of the window.
for j=n:3599,...
1e5(j)=chi(j)~chi(j-n+1);.
end
// clean up first part of plot if transients are too large
for j=1:300,...
1w5(j)=1w5(300) ;...

end

\\cuckoo // indicates end of routine

//plot results

plot(time,[1w1,1u3,1w5], *repo7/xlabel/Time (sec)/ylabel/Chi(k)/...

. Py Y Trarm
yMIO=V/ LEeReUd/ 10

title//?)
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